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Bose-Einstein Condensation

Bose-Einstein condensation (BEC) is a state where the bosons
collapse into the lowest quantum state near temperature
absolute zero.

Predicted by Satyendra Nath Bose and Albert Einstein in
1924-1925

First experiments in 1995, Science 269 (E. Cornell and C. Wieman et

al., 87Rb JILA), PRL 75 (Ketterle et al., 23Na MIT ) and PRL 75 (Hulet

et al., 7Li Rice).
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Spinor condensates

Magnetic trap:

internal degree of freedom frozen
scalar order parameter

Optical trap:

internal degree of freedom released
allow different angular momentum
magnetism and superfluidity
spin-F BEC, 2F + 1 hyperfine states, vector order parameter

4 / 36



Bose-Einstein condensate Spinor Bose-Einstein condensates Spin-1 BEC Spin-2 BEC

Pseudo spin-1/2 BEC

Binary BEC can be used as a model producing coherent
atomic beams ( J. Schneider, Appl. Phys. B, 69 (1999))

First experiment concerning with the binary BEC was
performed in JILA with with |F = 2,mf = 2〉 and |1,−1〉 spin
states of 87Rb. (C. J. Myatt et al.,Phys. Rev. Lett., 78
(1997))
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Spin-orbit coupling in spin-1/2

Interaction of a particle’s spin with its motion

fine structure of Hydrogen

Electron: orbital angular momentum (generates magnetic
field), interacts with the electron spin magnetic moment
(internal Zeeman effect)

Crucial for quantum-Hall effects, topological insulators

Major experimental breakthrough in 2011, Lin et al. have
created a SO coupled BEC, 85Rb: |↑〉 = |F = 1, mf = 0〉 and
|↓〉 = |F = 1, mf = −1〉.
SO coupling in cold atoms have been hot topics in recent years
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spin-1/2 BEC

• Coupled Gross-Pitaevskii equations (re-scaled):
Ψ := (ψ1(x, t), ψ2(x, t))T , x ∈ Rd in d dimensional spaces

i∂tψ1 =

[
−1

2
∇2 + V1 +

δ

2
+ (β11|ψ1|2 + β12|ψ2|2)

]
ψ1 +

Ω

2
ψ2,

i∂tψ2 =

[
−1

2
∇2 + V2 −

δ

2
+ (β21|ψ1|2 + β22|ψ2|2)

]
ψ2 +

Ω

2
ψ1,

Trapping potential: Vj(x) = 1
2 (γ2

xx
2 + γ2

yy
2 + γ2

z z
2) (j = 1, 2)

for 3D case

Interaction constants: βjl between j-th and l-th component
(positive for repulsive and negative for attractive )

Ω: Rabi frequency (internal Josephson junction)

δ: detuning constant for Raman transition
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Conserved quantities

Mass:

N(t) := ‖Ψ(·, t)‖2 =

∫

Rd

[|ψ1(x, t)|2+|ψ2(x, t)|2]dx ≡ N(0) = 1,

Energy per particle

E (Ψ) =

∫

Rd

[ 2∑

j=1

(
1

2
|∇ψj |2 + Vj(x)|ψj |2

)
+
δ

2

(
|ψ1|2 − |ψ2|2

)

+ Ω Re(ψ1ψ2) +
β11

2
|ψ1|4 +

β22

2
|ψ2|4 + β12|ψ1|2|ψ2|2

]
dx

Ground state patterns
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Ground States

• Nonconvex minimization problem

Eg := E (Φg ) = min
Φ∈S

E (Φ) ,

and

S :=
{

Φ = (φ1, φ2)T ∈ H1(Rd)2 | ‖Φ‖2 = 1,E (Φ) <∞
}

• Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

µφ1 =

[
−1

2
∇2 + V1(x) +

δ

2
+ (β11|φ1|2 + β12|φ2|2)

]
φ1 +

Ω

2
φ2,

µφ2 =

[
−1

2
∇2 + V2(x)− δ

2
+ (β12|φ1|2 + β22|φ2|2)

]
φ2 +

Ω

2
φ1,

• Chemical potential µ:

µ = µ = E (Φ) +

∫

Rd

(
β11

2
|φ1|4 +

β22

2
|φ2|4 + β12|φ1|2|φ2|2

)
dx.

9 / 36



Bose-Einstein condensate Spinor Bose-Einstein condensates Spin-1 BEC Spin-2 BEC

Theorem

Under condition lim
|x |→∞

V (x) =∞,

(
β11 β12

β12 β22

)
is positive definite.

There exists minimizers, i.e., the ground state (ψg
1 , ψ

g
2 ) exists, and

(|ψg
1 |, |ψ

g
2 |) is unique. Moreover, (ψg

1 , ψ
g
2 ) = (e iθ1 |ψg

1 |, e iθ2|ψg
2 |),

where

if Ω > 0, θ1 − θ2 = ±π
if Ω < 0, θ1 − θ2 = 0
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Limiting behavior

Theorem

Let (φg1 , φ
g
2 ) be the ground state of CGPEs. As Ω→ −∞, we have

φg1 − φ
g
2 → 0, j = 1, 2.

Theorem

Let (φg1 , φ
g
2 ) be the ground state of CGPEs. As δ → −∞, we have

φg2 → 0.
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Gradient Flow Discrete Normalized (GFDN)

• Numerical methods for computing the ground state (W. Bao& Q.

Du 2004; W. Bao, Z. Wen & X. Wu 2017; I. Danaila& P. Kazemi 2010;

X. Antoine, A. Levitt& Q. Tang 2016)





∂φ1
∂t = 1

2 ∆φ1 − V (x)φ1 − (β11|φ1|2 + β12|φ2|2)φ1 − λφ2

− δφ1, tn < t < tn+1,
∂φ2
∂t = 1

2 ∆φ2 − V (x)φ2 − (β12|φ1|2 + β22|φ2|2)φ2 − λφ1,

tn < t < tn+1,

φ1(x , tn+1) , φ1(x , t+
n+1) =

φ1(x ,t−n+1)

(‖φ1(· ,t−n+1)‖2
2+‖φ2(· ,t−n+1)‖2

2)1/2 ,

φ2(x , tn+1) , φ2(x , t+
n+1) =

φ2(x ,t−n+1)

(‖φ1(· ,t−n+1)‖2
2+‖φ2(· ,t−n+1)‖2

2)1/2

φ1(x , 0) = φ0
1(x), φ2(x , 0) = φ0

2(x).

φ1,2(x , t±n ) = lim
t→t±n

φ1,2(x , t) ‖φ0
1‖2

2 + ‖φ0
2‖2

2 = 1
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DNGF Continued

Step 1: Apply steepest descent method to unconstrained
problem

Step 2: Project back to satisfy the constraint

Remark: On the projection step, how to determine the
projection parameter.
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Continuous Normalized Gradient Flow

DNGF is a splitting scheme for




∂φ1
∂t = 1

2 ∆φ1 − V (x)φ1 − (β11|φ1|2 + β12|φ2|2)φ1

− λφ2 − δφ1 + µ(φ1, φ2, t)φ1,
∂φ2
∂t = 1

2 ∆φ2 − V (x)φ2 − (β12|φ1|2 + β22|φ2|2)φ2

− λφ1 + µ(φ1, φ2, t)φ2,

by choosing µ(φ1, φ2, t) properly∫
|Φ(x , t)|2 dx =

∫
|Φ(x , 0)|2 dx

E(Φ(·, t2)) ≤ E(Φ(·, t1)), t1 < t2,

projection step is equivalent to solve

∂tφj = µ(φ1, φ2, t)φj , j = 1, 2
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Phase separation

Property Let β12 → +∞, the phase of two components of the
ground state Φg = (φg1 , φ

g
2 )T will be segregated, i.e. Φg will

converge to a state such that φg1 · φ
g
2 = 0.
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Phase separation

Repulsive interactions only:

E (φ1, φ2) =

∫
1

2
|∇φ1|2 +

1

2
|∇φ2|2 +

β11

2
|φ1|4

+
β22

2
|φ2|4 + β12|φ1|2|φ2|2

Homogeneous case: β11β22 ≥ β2
12 mixed; otherwise separated

Nonhomogeneous case?
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β11 = β22, box potential (width L)

mixing factor: η = 2
∫
φ1φ2

CONTROLLING PHASE SEPARATION OF A TWO- . . . PHYSICAL REVIEW A 85, 043602 (2012)
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FIG. 1. (Color online) (a) The overlap factor η as a function of the
reduced parameter β12 [see Eq. (6)] in different dimensions (infinitely
deep square well potential case g11 = g22 = 0). Note that for all values
of d there exists a critical value βc

12 �= 0, below which η attains its
maximal possible value 1. (b) A schematic plot of η vs the width of
the square well in different dimensions. Note the counterintuitive fact
that in the three-dimensional case (d = 3) the stronger we squeeze
the system (the smaller L is) the stronger phase separation is (the
smaller η is).

kinetic terms dominate and phase separation is suppressed
regardless of the condition (1). The two-dimensional case
is another story. The parameter L simply drops out in the
curly braces. It is no use to adjust the width of the well to
enhance the importance of the kinetic energy or the interaction
energy relatively. The kinetic and interaction energies should
be treated on an equal footing, which means the analysis
leading to criterion (1) may be invalid.

We have checked all these predictions numerically. Note
that on the problem of phase separation, the intracomponent
interactions are on the same side as the kinetic energy—they
both try to delocalize the condensates. Therefore, to highlight
the effect of kinetic energy, we shall set g11 = g22 = 0 (β11 =
β22 = 0) so that the kinetic energy is the only element acting
against phase separation. As we shall see below, this special
case also admits a simple analytical analysis.

We have solved the ground state of the system in all
dimensions for a given value of β12 [16]. The overlap factor
η is plotted versus β12 in Fig. 1(a). We observe that in
all dimensions there exists a critical value of β12 (denoted
as βc

12), below which the two condensates wave functions
are equal (η = 1). That is, for β12 � βc

12, phase separation
is completely suppressed. Above the critical value, phase
separation develops (η < 1) as β12 increases, but is still greatly
suppressed for a wide range of value of β12. It should be
stressed that though in Fig. 1(a) the curves of η − β12 are
qualitatively similar to each another for all values of d (the
plateau of η = 1 is always located in the direction of β12 → 0),
the curves of η − L will be quite different. The reason is that
β12 ∝ L2−d . Figure 1(b) is a schematic plot of η versus L in all
three cases. It shows that η as a function of L is monotonically
decreasing, constant, and monotonically increasing in one,
two, and three dimensions, respectively. This means that to
suppress phase separation, in one dimension we should tighten
the confinement, in three dimensions we should loosen the
confinement, while in two dimensions it is useless to change
the confinement. Overall, Fig. 1 confirms the initial conjecture
that kinetic energy can suppress phase separation.

In hindsight, we can actually understand why phase separa-
tion can be suppressed in the limits of L → 0 in one dimension
and L → ∞ in three dimensions. Consider two different
configurations. The first one is a phase-separated one—the two
condensates occupy the left and right halves of the container
separately. The second one is a phase-mixed one—the two
condensates both occupy the whole space available and thus
overlap significantly. Compared with the first configuration,
the second one costs more intercomponent interaction energy,
which is on the order of L−d , but saves more kinetic energy,
which is on the order of L−2. The second configuration (phase
mixed) is more economical in energy in the limit of L → 0
and L → ∞, in the cases of d = 1 and d = 3, respectively.
The case of d = 2 is more subtle and which configuration wins
depends on parameters other than L.

A remarkable fact revealed in Fig. 1, but not so obvious in
our arguments, is that in the symmetric case with β11 = β22 =
0, η = 1 for β12 � βc

12, which is on the order of unity. This is
a stronger fact than η → 1 as β12 → 0 as we argued. Actually,
the general observation is that for β11 = β22 > 0, η = 1 for
β12 smaller than its critical value βc

12, which is larger than β11.
This fact has rich meanings. On the one hand, it demonstrates
that the kinetic energy is very effective—phase separation can
be completely suppressed by it even if β12 > β11 = β22, that is,
when (1) is satisfied. On the other hand, it strongly indicates
that as β12 crosses the critical value, the system undergoes
a second-order phase transition which can fit in the Landau
formalism. The picture is that the exchange symmetry φ1 ↔ φ2

of the energy functional (5) is preserved for β12 < βc
12, but is

spontaneously broken as β12 surpasses βc
12.

We have been able to prove the first point rigorously on
the mathematical level (see Appendix A). However, it is also
desirable to develop a physical understanding of the two points.
This can be achieved by studying a two-component BEC in a
double-well potential (see Appendix B) or using a variational
approach [17]. We note that in the limit of β12 → 0, φ1,2

both converge to the (nondegenerate) ground state of a single
particle in the [−1/2, + 1/2]d infinitely deep square well.
As β12 is turned on, the two wave functions are deformed
and excited states mix in. Because the energies of the excited
states grow up quadratically, we cut off at the first excited
level and take the following ansatz for the two condensate
wave functions:

φ1 = c0ϕ0 + c1ϕ1, φ2 = c0ϕ0 − c1ϕ1. (7)

Here ϕ0 is the ground state, while ϕ1 is one of the possibly
degenerate first excited states. The coefficients c0,1 are real and
satisfy the normalization condition c2

0 + c2
1 = 1. Obviously,

complete phase mixing would correspond to c1 = 0, while
partial phase separation to c1 �= 0. Our numerical simulations
indicate that (this is also supported by the variational approach
itself, see Appendix C) in the two-dimensional case, when
phase separation occurs, the two condensates are shifted either
along x or y direction; in the three-dimensional case, when
phase separation occurs, the two condensates are shifted either
along x or y or z direction. This fact motivates us to choose
ϕ1 in the following form:

d = 1 : ϕ1 = w1(x), (8a)

d = 2 : ϕ1 = w0(x)w1(y) or w1(x)w0(y), (8b)

043602-3

Exist βc > β, when β12 ≤ βc , η = 1

proof by Fundamental gap+elliptic estimates
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Fundamental gap

consider linear case −∆ + V (x), x ∈ U ⊂ Rd (U compact
convex)1 with Dirichlet boundary conditions

eigenvalues λ0 < λ1 ≤ λ2 ≤ · · · , eigenfunctions {φk}∞k=0

∆φk − V (x)φk + λkφk = 0, φk |∂U = 0

fundamental gap := λ1 − λ0

Gap conjecture: Let U be a bounded convex domain with
diameter D, V (x) be convex, then the fundamental gap

λ1 − λ0 ≥
3π2

D2

1B. Andrews AND J. Clutterbuck, JAMS, 2011
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Spin-1 BEC

Order parameter Ψ = (ψ1, ψ0, ψ−1)

Spin-1 GPE

i∂tΨ = [H + β0ρ− pfz + qf2
z + β1F · f]Ψ,

F = (Fx ,Fy ,Fz)T = (Ψ∗fxΨ,Ψ∗fyΨ,Ψ∗fzΨ)T

spin-1 matrices f = (fx , fy , fz)T as

fx =
1
√

2

0 1 0
1 0 1
0 1 0

 , fy =
i
√

2

0 −1 0
1 0 −1
0 1 0

 , fz =
1
√

2

1 0 0
0 0 0
0 0 −1



H = − 1
2
∇2 + V (x), ρ = |Ψ|2 =

∑1
l=−1 |ψl |2

p and q = q0
~ωs

are the linear and quadratic Zeeman terms.

β0 = Nc0
x3
s ~ωs

= 4πN(a0+2a2)
3xs

and β1 = Nc2
x3
s ~ωs

= 4πN(a2−a0)
3xs
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Energy and ground states

Fx = 1√
2

[
ψ1ψ0 + ψ0(ψ1 + ψ−1) + ψ−1ψ0

]
, Fy = i√

2

[
−ψ1ψ0 + ψ0(ψ1 − ψ−1) + ψ−1ψ0

]
,

Fz = |ψ1|2 − |ψ−1|2

Energy:

E(Ψ(·, t)) =

∫
Rd


1∑

l=−1

(
1

2
|∇ψl |

2 + (V (x)− pl + ql2)|ψl |
2
)

+
β0

2
|Ψ|4 +

β1

2
|F|2

 dx

Mass constraint N(Ψ(·, t)) := ‖Ψ(·, t)‖2 =
∫
Rd
∑

l=−1,0,1 |ψl (x, t)|2 dx = N(Ψ(·, 0)) = 1

Magnetization (M ∈ [−1, 1]) M(Ψ(·, t)) :=
∫
Rd
∑

l=−1,0,1 l|ψl (x, t)|2 dx = M(Ψ(·, 0)) = M

Ground state- Find
(

Φg ∈ SM
)

such that Eg := E
(

Φg
)

= minΦ∈SM E (Φ)

SM =

{
Φ = (φ1, φ0, φ−1)T | ‖Φ‖ = 1,

∫
Rd

[
|φ1(x)|2 − |φ−1(x)|2

]
dx = M, E(Φ) <∞

}
.
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Properties

Quadratic Zeeman q = 0

Ferromagnetic system-spin-dependent interacton β1 < 0

Single mode approximation.
φj identical up to a constant factor

Anti-ferromagnetic system-spin-dependent interacton β1 > 0

φ0 = 0

|F|2 = (|φ1|2 − |φ−1|2)2 + 2|φ0|2(|φ1|2 + |φ−1|2)− 4Re(φ2
0φ1φ−1)

Fx = Fy 6= 0: ferromagnetic; Fx = Fy = 0: anti-ferromagnetic
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Mathematical results

Theorem

Existence: lim
|x|→∞

V (x) = +∞, M ∈ (−1, 1), β0 ≥ 0 and β0 + β1 ≥ 0, there

exists ground state Φg = (φg
1 , φ

g
0 , φ

g
−1) ∈ SM

q = 0 and β1 < 0, ferromagnetic: φg
l = e iθlαlφg

(θ1 + θ−1 − 2θ0 = (2k + 1)π, α1 = 1+M
2

, α−1 = 1−M
2

, α0 =
√

1−M2

2

q < 0 and β1 > 0, anti-ferromagnetic: φg
0 = 0, and Φ̃g = (φg

1 , φ
g
−1)T is a

minimizer of the pseudo spin-1/2 system
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Numerical methods

Normalized Gradient Flow:

∂tφ1 =

[
1

2
∇2 − V (x)− (β0 + β1)(|φ1|

2 + |φ0|
2)− (β0 − β1)|φ−1|

2
]
φ1 − β1φ̄−1φ

2
0 + [µΦ(t) + λΦ(t)]φ1

∂tφ0 =

[
1

2
∇2 − V (x)− (β0 + β1)(|φ1|

2 + |φ−1|
2)− β0|φ0|

2
]
φ0 − 2β1φ−1 φ̄0φ1 + µΦ(t) φ0

∂tφ−1 =

[
1

2
∇2 − V (x)(β0 + β1)(|φ−1|

2 + |φ0|
2)− (β0 − β1)|φ1|

2
]
φ−1 − β1φ

2
0 φ̄1 + [µΦ(t)− λΦ(t)]φ−1

• Gradient flow part (imaginary time spin-1 GPE)+projection (Lagrange

multipliers)//Gradient flow part (imaginary time spin-1 GPE+Lagrange

multipliers) + projection (Lagrange part)

• For projection constants: φl(x, t
+
n+1) = σlφl(x, t

−
n+1) (l = ±1, 0), two

equations from Mass and Magnetization constraints, from

∂tφl(x, t) = [µΦ(t) + lλΦ(t)]φl(x, t), an additional equation σ1σ−1 = σ2
0 .

(quadrattic equation to be solved for σl)
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Numerical results

Ferromagnetic interaction
CONTENTS 41
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Figure 4.1: Wave functions of the ground state, i.e., φ
g
1(x) (dashed line), φ

g
0(x) (solid line),

and φ
g
−1(x) (dotted line), of 87Rb in Example 4.1 case I with a fixed number of particles

N=104 for different magnetizations M=0,0.2,0.5,0.9 in an optical lattice potential.

Example 4.1. To show the ground states of the spin-1 BEC, we take d = 1, p = q = 0,
V(x)=x2/2+25sin2(πx

4

)
in (4.2). Two different types of interaction strengths are chosen

as

• Case I. For 87Rb with dimensionless quantities in (4.2) used as β0 = 0.0885N, and
β1 =−0.00041N with N the total number of atoms in the condensate and the di-
mensionless length unit as =2.4116×10−6 [m] and time unit ts =0.007958 [s].

• Case II. For 23Na with dimensionless quantities in (4.2) used as β0 = 0.0241N, and
β1=0.00075N, with N the total number of atoms in the condensate and the dimen-
sionless length unit as =4.6896×10−6 [m] and time unit ts =0.007958 [s].

The ground states are computed numerically by the backward Euler sine pseudospec-
tral method presented in [27]. Figure 4.1 shows the ground state solutions of 87Rb in case
I with N=104 for different magnetizations M. Figure 4.2 shows similar results for 23Na
in case II.
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Anti-ferromagnetic interaction
42 CONTENTS
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Figure 4.2: Wave functions of the ground state, i.e., φ
g
1(x) (dashed line), φ

g
0(x) (solid

line), and φ
g
−1(x) (dotted line), of 23Na in Example 4.1 case II with N = 104 for different

magnetizations M=0,0.2,0.5,0.9 in an optical lattice potential.

For the cases when q = 0 in Theorems 4.2&4.3, the minimization problem (4.9) can
be reduced to a single component and a two component system, respectively, where the
numerical methods could be simplified [20].

We remark here that there is another type of ground state of the spin-1 BEC, especially
with an Ioffe-Pritchard magnetic field B(x), in the literatures [20, 70], which is defined as
the minimizer of the energy functional subject to the conservation of total mass:

Find
(
Φ̃g∈S

)
such that

Ẽg :=E
(
Φ̃g
)
=min

Φ∈S
E(Φ), (4.26)

where the nonconvex set S is defined as

S=
{

Φ=(φ1,φ0,φ−1)
T | ‖Φ‖=1, E(Φ)<∞

}
. (4.27)

For the analysis and numerical simulation of this type of the ground state of spin-1 BEC,
we refer to [20,57,70] and references therein. In addition, when there is no Ioffe-Pritchard
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Spin-2 BEC

Order parameter Ψ = (ψ2, ψ1, ψ0, ψ−1, ψ−2)

Spin-2 GPE

i∂tΨ = [H + β0ρ− pfz + qf2
z + β1F · f]Ψ + β2A00AΨ

F = (Fx ,Fy ,Fz)T = (Ψ∗fxΨ,Ψ∗fyΨ,Ψ∗fzΨ)T

spin-2 matrices f = (fx , fy , fz)T as fz = diag(2, 1, 0,−1,−2)

fx =



0 1 0 0 0

1 0
√

3
2

0 0

0
√

3
2

0
√

3
2

0

0 0
√

3
2

0 1

0 0 0 1 0

 , fy = i



0 −1 0 0 0

1 0 −
√

3
2

0 0

0
√

3
2

0 −
√

3
2

0

0 0
√

3
2

0 −1

0 0 0 1 0



H = − 1
2
∇2 + V (x), ρ = |Ψ|2 =

∑1
l=−1 |ψl |2

p and q = q0
~ωs

are the linear and quadratic Zeeman terms.

β0 = Nc0
x3
s ~ωs

= 4πN(a0+2a2)
3xs

(spin-independent contact interaction) and

β1 = Nc2
x3
s ~ωs

= 4πN(a2−a0)
3xs

(spin-exchange), β2 (spin-singleton interaction)
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Energy and ground states

Fx = ψ2ψ1 + ψ1ψ2 + ψ−2ψ−1 + ψ−1ψ−2 +
√

6
2

(ψ1ψ0 + ψ0ψ1 + ψ0ψ−1 + ψ−1ψ0),

Fy = i
[
ψ1ψ2 − ψ2ψ1 + ψ−2ψ−1 − ψ−1ψ−2 +

√
6

2
(ψ0ψ1 − ψ1ψ0 + ψ−1ψ0 − ψ0ψ−1)

]
,

Fz = 2|ψ2|2 + |ψ1|2 − |ψ−1|2 − 2|ψ−2|2

A =
1
√

5


0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0


and A00 := A00(Ψ) = ΨTAΨ with A00 = 1√

5
(2ψ2ψ−2 − 2ψ1ψ−1 + ψ2

0 )

Energy:

E(Ψ(·, t)) =

∫
Rd


2∑

l=−2

(
1

2
|∇ψl |

2 + (V (x)− pl + ql2)|ψl |
2
)

+
β0

2
|Ψ|4 +

β1

2
|F|2 +

β2

2
|A00|

2

 dx

Mass constraint N(Ψ(·, t)) := ‖Ψ(·, t)‖2 =
∫
Rd
∑2

l=−2 |ψl (x, t)|2 dx = N(Ψ(·, 0)) = 1

Magnetization (M ∈ [−2, 2]) M(Ψ(·, t)) :=
∫
Rd
∑2

l=−2 l|ψl (x, t)|2 dx = M(Ψ(·, 0)) = M

Ground state- Find
(

Φg ∈ SM
)

such that Eg := E
(

Φg
)

= minΦ∈SM E (Φ)

SM =

Φ = (φ2, φ1, φ0, φ−1, φ−2)T | ‖Φ‖ = 1,

∫
Rd

2∑
l=−2

|ψl |
2 dx = M, E(Φ) <∞

 .
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Ground state properties

Uniform gas, q = 0 (cf. Ueda 09)

Ferromagnetic: β1 < 0 and β1 <
β2

20 , Fx ,Fy 6= 0, A00 = 0

Nematic: β1 < 0 and β1 >
β2

20 , Fx ,Fy = 0, A00 6= 0

Cylic: β1 > 0 and β2 > 0, Fx = Fy = 0, A00 = 0
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Mathematical results

Theorem

Existence: lim
|x|→∞

V (x) = +∞, M ∈ (−2, 2) β0 + 4β1 ≥ 0 with
β2
20
> β1 and β1 < 0; or M ∈ (−2, 2),

β0 +
β2
5
≥ 0 with β2 < 0 and

β2
20
≤ β1; or M ∈ (−2, 2), β0 ≥ 0, β1 ≥ 0 and β2 ≥ 0., there exists ground

state Φg = (φ
g
2 , φ

g
1 , φ

g
0 , φ

g
−1, φ

g
−2) ∈ SM

q = 0 and β1 < 0, β1 <
β2
20

, ferromagnetic (SMA): φ
g
l

= e iθ1+ilθ2αlφg with α2 =
(2+M)2

16
,

α1 =
(2+M)

√
4−M2

8
, α0 =

√
6(4−M2)

16
, α−1 =

(2−M)

√
4−M2

8
and α−2 =

(2−M)2

16

q < 0 and β1 < 0, β1 ≥
β2
20

, nematic: φ
g
0 = φ

g
1 = φ

g
−1 = 0, and Φ̃g = (φ

g
2 , φ

g
−2)T is a minimizer of

the pseudo spin-1/2 system

β1 > 0, β2 > 0, cylic: more complicated than the uniform gas case
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Numerical methods

NGF: ∂tΦ = −[H + β0ρ− pfz + qf2
z + β1F · f]Φ− β2A00AΦ + µΦ(t)Φ + λΦ(t)fzΦ

GFDN:

Φ(1) − Φn

τ
= −[H + β0ρ

n − pfz + qf2
z + β1F

n · f]Φ(1) − β2A
n
00AΦ(1) + µΦn Φn + λΦn fzΦn

,

projection step for Φ(1) = (φ
(1)
2 , φ

(1)
1 , φ

(1)
0 , φ

(1)
−1, φ

(1)
−2)T

Φn+1 = diag(α2, α1, α0, α−1, α−2)Φ(1)

Determine the five projection constants with Mass and Magnetization constraints
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Different projection strategies

• view projection as the split-step for ∂tφl = (µ+ lλ)φl
αl = e∆t(µ+lλ) = c0c

l
1 (two unknowns c0, c1)

c2
0

(
c4

1‖φ
(1)
2 ‖

2 + c2
1‖φ

(1)
1 ‖

2 + ‖φ(1)
0 ‖

2 + c−2
1 ‖φ

(1)
−1‖

2 + c−4
1 ‖φ

(1)
−2‖

2
)

= 1,

c2
0

(
2c4

1‖φ
(1)
2 ‖

2 + c2
1‖φ

(1)
1 ‖

2 − c−2
1 ‖φ

(1)
−1‖

2 − 2c−4
1 ‖φ

(1)
−2‖

2
)

= M.

A quartic equation to be solved, positive root

αl = e∆t(µ+lλ) ≈ (1 + ∆µ + lλ) = c0(1 + lc1)

(1 + 2c1)2‖φ(1)
2 ‖

2 + (1 + c1)2‖φ(1)
1 ‖

2 + ‖φ(1)
0 ‖

2 + (1− c1)2‖φ(1)
−1‖

2 + (1− 2c1)2‖φ(1)
−2‖

2 =
1

c2
0

2(1 + 2c1)2‖φ(1)
2 ‖

2 + (1 + c1)2‖φ(1)
1 ‖

2 − (1− c1)2‖φ(1)
−1‖

2 − 2(1− 2c1)2‖φ(1)
−2‖

2 =
M

c2
0

A quadratic equation to be solved, positive root not guaranteed

αl = 1/e−∆t(µ+lλ) ≈ 1/(1− ∆µ− lλ) = 1/(c0(1 + lc1))

(1 + 2c1)−2‖φ(1)
2 ‖

2 + (1 + c1)−2‖φ(1)
1 ‖

2 + ‖φ(1)
0 ‖

2 + (1− c1)−2‖φ(1)
−1‖

2 + (1− 2c1)−2‖φ(1)
−2‖

2 = c2
0

2(1 + 2c1)−2‖φ(1)
2 ‖

2 + (1 + c1)−2‖φ(1)
1 ‖

2 − (1− c1)−2‖φ(1)
−1‖

2 − 2(1− 2c1)−2‖φ(1)
−2‖
−2 = Mc2

0

An octic equation to be solved, positive root (guaranteed)
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Numerical example

54 CONTENTS

Remark 5.1. The idea of determining the projection constants through (5.23)-(5.24) can
be generalized to other spin-F system very easily [47].
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Figure 5.1: Ground states of spin-2 BEC in Example 5.1 for different magnetization M=0
(left column) and M= 0.5 (right column). The set of parameters are those in case (i) for
the top panel, case (iii) for the bottom panel and case (ii) for the middle panel.

Example 5.1. To show the ground state of a spin-2 BEC, we take d= 1, p= q= 0 and
V(x)= 1

2 x2 in (5.7) and consider three types of interactions, i.e. (i) β0 =100, β1 =−1 and
β2=2 (ferromagnetic interaction); (ii) β0=100, β1=1 and β2=−2 (nematic interaction); (i-
ii) β0=100, β1=10 and β2=2 (cyclic interaction). Figure 5.1 depicts the numerical ground
state profiles under different types of interactions, which shows very rich structures. In
particular, we find that the single mode approximation in Theorem 5.2 and the vanishing
components approximation in Theorem 5.3 hold for the ferromagnetic interactions and
the nematic interactions, respectively.
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Summary

Ground states of spin-1/2, 1, 2 BECs

Rigorous ground state properties

Projection methods for computing ground states
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THANK YOU!
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