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Leray’s problem in Channels

Consider steady incompressible Navier-Stokes equations{
u · ∇u +∇p = ∆u,

div u = 0
(1)

in a nozzle domain Ω which tends to a straight cylinder Ω̂ in the
asymptotic ends.
Leray’s Problem: Find a solution of the system (1) satisfying the
no slip condition

u = 0 on ∂Ω,

and tending to Poiseuille flows with the flux Φ at far fields.



Poiseuille flow and Hagen-Poiseuille Flows

The Poiseuille flows in the straight cylinder Σ× R has the form
v = (0, 0, v z(x , y)) which satisfies

∆uz = Constant in Σ,

uz = 0 on ∂Σ,∫
Σ
uz(x , y) dxdy = Φ.

Clearly, the Poiseuille flow is uniquely determined by Φ.
In the case that Σ = B1(0), the Poiseuille flow has the explicit form

u = Ū(r)ez :=
2Φ

π
(1− r2)ez (2)

where r =
√
x2 + y2. This is also called Hagen-Poiseuille flow.



Progress and Problem

I Amick(1977): Existence of unique weak solution under a
smallness assumption on |Φ|.

I Ladyzhenskaya and Solonnikov(1980): Existence of a weak
solution without any assumption on |Φ|. However, there is no
global estimate for v.

I ...

Open Problem (Galdi’s book): Existence and uniqueness of
solutions with large flux Φ? Far field behavior?



Linearized Problem

Hence we consider the following problem

−∆v + Ū(r)∂zv + v · ∇
[
Ū(r)ez

]
+∇p = F,

div v = 0,

∫
Σ v · n dS = 0

(3)

with boundary condition

v = 0 on ∂Ω. (4)

Question: Given F ∈ L2(Ω), can we show the existence of unique
solution v ∈ H2(Ω), with

‖v‖H2(Ω) ≤ C‖F‖L2(Ω)?



Linear Structural Stability in the Axisymmetric Setting

Theorem 1 Given
F = F r (r , z)er + F z(r , z)ez + F θ(r , z)eθ ∈ L2(Ω). There exists a
unique axisymmetric solution v ∈ H2(Ω) to the linearized problem,
where the solution

v(x , y , z) = v(r , z) = v r (r , z)er + v z(r , z)ez + vθeθ,

and satisfies
‖v‖H2(Ω) ≤ C (1 + Φ

1
4 )‖F‖L2(Ω) (5)

and
‖v‖

H
5
3 (Ω) ≤ C‖F‖L2(Ω),

where C is independent of Φ.



Linear Dynamical Stability
I Linearized perturbation equations: sv −∆v + Ū(r)∂zv + v · ∇(Ū(r)ez) +∇p = F,

div v = 0.
(6)

I Dirichlet boundary condition:

v(x , y , z) = 0, when r2 = x2 + y2 = 1. (7)

I Zero flux condition: ∫
B1(0)

v · n dS = 0. (8)

Problem: Does the spectral s of the problem (6)-(8) satisfy
<s < 0?
Progress: When the flows are periodic in the axial direction, the
spectrum analysis for the linearized problem has been obtained by
Gong and Guo (2016) and Chen, Wei, and Zhang (2019) in
axisymmetric and 3D setting, respectively.



Numerical Computations and Rigorous Analysis

The computation by Meseguer and Trefethen (JCP, 2003):

I The norm of the resolvent operator R(s) (as a map from L2

to L2) is maximized at s = 0

I ‖R(0)‖L2→L2 ∼ Re2



Further Remark on the Norm of the Resolvent

Note v = R(0)F if
2(1− r2)

π
∂zv + v · ∇

[
2(1− r2)

π
ez

]
+∇p =

1

Re
∆v + F,

divv = 0,

(9)

It follows from Theorem 1 that one has

‖v‖L2 ≤ C · Re‖F‖L2 .

This implies at least in the axisymmetric setting,

‖R(0)‖L2→L2 ≤ C · Re.



Uniform Nonlinear Structural Stability

Theorem 2 Given
F = F r (r , z)er + F z(r , z)ez + F θ(r , z)eθ ∈ L2(Ω). There exists a
positive constant ε0, such that if

‖F‖L2(Ω) ≤ ε0,

the Navier-Stokes equations with Dirichlet boundary condition has
a unique axisymmetric solution u ∈ H2(Ω) satisfying

‖u− Ū(r)ez‖
H

5
3 (Ω)
≤ C‖F‖L2(Ω), (10)

and
‖u− Ū(r)ez‖H2(Ω) ≤ C (1 + Φ

1
4 )‖F‖L2(Ω), (11)

where C is independent of Φ.



Remarks on Structural Stability

I There is no restriction on the size of flux |Φ|.

I The Hagen-Poiseuille flow is uniformly structural stable with
respect to the flux Φ for a given F.



The Linearized System

The linearized system for the axially symmetric solutions for the
Navier-Stokes system is

Ū(r)
∂ur

∂z
+
∂P

∂r
−
[

1

r

∂

∂r

(
r
∂ur

∂r

)
+
∂2ur

∂z2
− ur

r2

]
= F r ,

ur
∂Ū(r)

∂r
+ Ū(r)

∂uz

∂z
+
∂P

∂z
−
[

1

r

∂

∂r

(
r
∂uz

∂r

)
+
∂2uz

∂z2

]
= F z ,

∂ru
r + ∂zu

z +
ur

r
= 0 ,

(12)
and

Ū(r) · ∂zuθ −∆uθ = F θ. (13)

Observation: The system for swirl component velocity and the
other two components (radially and axially components) are
decoupled.



Vorticity and Stream Functions

Let ωθ = ∂ru
z − ∂zur . Then ωθ satisfies

Ū(r)∂zω
θ −

(
∂2
r + ∂2

z +
1

r
∂r

)
ωθ +

ωθ

r2
= f , (14)

where f = ∂rF
z − ∂zF r . Introduce the stream function ψ(r , z)

satisfying
∂z(rψ) = −rur ∂r (rψ) = ruz .

ωθ =
∂

∂r

(
1

r

∂

∂r
(rψ)

)
+ ∂2

zψ.

ψ satisfies the following equation

Ū(r)∂z(L+ ∂2
z )ψ − (L+ ∂2

z )2ψ = f , (15)

where

L =
∂

∂r

(
1

r

∂

∂r
(r ·)
)

=
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
.



Fourier Transform and Boundary Conditions
Taking the Fourier transform in z variable yields

iξŪ(r)(L − ξ2)ψ̂ − (L − ξ2)2ψ̂ = f̂ . (16)

Note that the boundary conditions for ur and uz are as follows
ur (1, z) = uz(1, z) = 0,∫ 1

0
ruz(r , z) dr = 0.

(17)

When we are working with classical solutions, we need the
following compatibility condition (by Liu and Wang)

ψ(0, z) = (L+ ∂2
z )ψ(0, z) = 0.

So the boundary conditions for ψ̂ are as follows.{
ψ̂(0) = ψ̂(1) = ψ̂

′
(1) = 0,

Lψ̂(0) = 0.
(18)



The First Estimate and Hardy Inequality-I
Multiplying the both sides of the equation with ψ̄r and integrating
over the domain yield∫ 1

0
|Lψ̂|2r dr + 2ξ2

∫ 1

0

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r
dr + ξ4

∫ 1

0
|ψ̂|2r dr

= −<
∫ 1

0
f̂ ψ̂r dr − 4Φ

π
ξ=
∫ 1

0

[
d

dr
(r ψ̂)r ψ̂

]
dr ,

and

ξ

∫ 1

0

Ū(r)

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr + ξ3

∫ 1

0
Ū(r)|ψ̂|2r dr

= −=
∫ 1

0
f̂ ψ̂r dr .

Lemma 1 Let g ∈ C 1([0, 1]) satisfy g(0) = 0, one has∫ 1

0
|g(r)|2r dr ≤ C

∫ 1

0

∣∣∣∣d(rg)

dr

∣∣∣∣2 (1− r2)

r
dr . (19)



The first Estimate and Hardy Inequality-II

Applying Lemma 1 to the imaginary part,

Φ2ξ2

∫ 1

0
|ψ̂|2r dr ≤ C

∫ 1

0
|f̂ |2r dr . (20)

Hence one has∣∣∣∣4Φ

π
ξ

∫ 1

0

d

dr
(r ψ̂)r ψ̂ dr

∣∣∣∣ ≤1

4

∫ 1

0

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r
dr + CΦ2ξ2

∫ 1

0
|ψ̂|2r dr

≤1

4

∫ 1

0
|Lψ̂|2r dr + C

∫ 1

0
|f̂ |2r dr .



A Priori Estimate and Existence

Basic a priori estimate:

ξ4

∫ 1

0

∣∣∣ψ̂∣∣∣2 r dr + ξ2

∫ 1

0

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r
dr +

∫ 1

0
|L2ψ̂|2r dr

≤ C

∫ 1

0
|f̂ |2r dr .

High order a priori estimate:

ξ4

∫ 1

0

∣∣∣Lψ̂∣∣∣2 r dr + ξ6

∫ 1

0

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r
dr + ξ8

∫ 1

0

∣∣∣ψ̂∣∣∣2 r dr
≤ C (1 + Φ)

∫ 1

0
|f̂ |2r dr

and ∫ 1

0
|L2ψ̂|2r dr ≤ C (1 + Φ2)

∫ 1

0
|f̂ |2r dr .



Estimate for the Case with Small Flux

A more careful estimate shows∫ +∞

−∞

∫ 1

0

{(
|Lψ̂|2 + ξ4|ψ̂|2

)
r + ξ2

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r

}
drdξ

≤C (1 + Φ2)‖F∗‖2
L2(Ω),

where F∗ = F rer + F zez . Note that ωθ = (L+ ∂2
z )ψeθ, one has

‖v∗‖H1(Ω) ≤ C‖∇v∗‖L2(Ω) = C‖ωθ‖L2(Ω) ≤ C (1 + Φ)‖F∗‖L2(Ω),

where v∗ = v rer + v zez . Applying the regularity theory for Stokes
equations gives

‖v∗‖H2(Ω) ≤ C‖F∗‖L2(Ω) + Φ‖∂zv∗‖L2(Ω) + Φ‖v r‖L2(Ω) + C‖v∗‖H1(Ω)

≤ C (1 + Φ2)‖F∗‖L2(Ω).



Case with Large Flux and Low Frequency (|ξ| ≤ 1
ε1Φ)

The energy estimate gives∫ 1

0
|Lψ̂|2r dr + 2ξ2

∫ 1

0

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r
dr + ξ4

∫ 1

0
|ψ̂|2r dr

≤C (ε1)

∫ 1

0
|F̂∗|2r dr .

(21)

Let

χ1(ξ) =

 1, |ξ| ≤ 1

ε1Φ
,

0, otherwise,

and ψlow be the function such that ψ̂low = χ1(ξ)ψ̂. Define

v rlow = ∂zψlow , v zlow = −∂r (rψlow )

r
, v∗low = v rlower + v zlowez .

‖v∗low‖H2(Ω) ≤ C‖F∗low‖L2(Ω). (22)



Case with Large Flux and high frequency (|ξ| ≥ ε1

√
Φ)-I

The energy estimate yields∫ 1

0
|Lψ̂|2r dr + ξ2

∫ 1

0

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 1

r
dr + ξ4

∫ 1

0
|ψ̂|2r dr

≤C |ξ|−2

∫ 1

0
|F̂∗|2r dr ,

(23)

and

Φ|ξ|
∫ 1

0

1− r2

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr + Φ|ξ|3
∫ 1

0
(1− r2)|ψ̂|2r dr

≤C |ξ|−2

∫ 1

0
|F̂∗|2r dr .

(24)

Thus one has

‖v∗high‖H1(Ω) ≤ C‖ωθ
high‖L2(Ω) ≤ CΦ−

1
2 ‖F∗high‖L2(Ω),



Case with Large Flux and High Frequency (|ξ| ≥ ε1

√
Φ)-II

where

v∗high = v rhigher+v zhighez with v rhigh = ∂zψhigh, v zhigh = −
∂r (rψhigh)

r

and ψ̂high = χ2(ξ)ψ̂ with

χ2(ξ) =

{
1, |ξ| ≥ ε1

√
Φ,

0, otherwise.

The regularity estimate for the Stokes equations gives

‖v∗high‖H2(Ω) ≤ C (1 + Φ
1
4 )‖F∗high‖L2(Ω), (25)

Using interpolation gives

‖v∗high‖H 5
3 (Ω)
≤ C‖F∗high‖L2(Ω),



Large Flux and Intermediate Frequency

( 1
ε1Φ ≤ |ξ| ≤ ε1

√
Φ)

Inspired by the work by Gallagher, Higaki and Maekawa(2019), ψ
can be decomposed into four parts,

ψ̂(r) = ψ̂s(r) + aI1(|ξ|r) + b(χψ̂BL + ψ̂e). (26)

I ψ̂s is a solution to the following problem{
iξŪ(r)(L − ξ2)ψ̂s − (L − ξ2)2ψ̂s = f̂ ,

ψ̂s(0) = ψ̂s(1) = Lψ̂s(0) = Lψ̂s(1) = 0.
(27)

I ψ̂BL is the boundary layer profile, which is the exact solution
(exponentially decay away from r = 1) of the equation(

i
ξΦ

π
4(1− r)− d2

dr2
+ ξ2

)(
d2

dr2
− ξ2

)
ψ̂BL = 0. (28)

One can represent ψ̂BL in terms of the Airy function.



The Error Term and Irrotational Flows

I ψ̂e is a remainder term, which satisfies the problem{
iξŪ(r)(L − ξ2)(χψ̂BL + ψ̂e)− (L − ξ2)2(χψ̂BL + ψ̂e) = 0,

ψ̂e(0) = ψ̂e(1) = Lψ̂e(0) = Lψ̂e(1) = 0,

where χ is a smooth cut-off function satisfying

χ(r) = 1 if r ≥ 1

2
and χ(r) = 0 if r ≤ 1

4
.

I I1(ρ) is the modified Bessel function of the first type,
satisfying I1(z) is the modified Bessel function satisfying z2 d2

dz2
I1(z) + z

d

dz
I1(z)− (z2 + 1)I1(z) = 0,

I1(0) = 0, I1(z) > 0 for z > 0.

This implies
(L − ξ2)I1(|ξ|r) = 0.



Match the Boundary Conditions

The no-slip boundary conditions give aI1(|ξ|) + bψ̂BL(1) = 0,

a|ξ|I ′1(|ξ|) + b
d

dr
ψ̂BL(1) + b

d

dr
ψ̂e(1) = − d

dr
ψ̂s(1).

(29)

One can get the following estimate

‖v∗med‖H2(Ω) ≤ C‖F∗med‖L2(Ω). (30)



Estimate for the Swirl Velocity

Multiplying the equation for vθ by r v̂θ yields∫ 1

0

∣∣∣∣ ddr (r v̂θ)

∣∣∣∣2 1

r
dr + ξ2

∫ 1

0

|v̂θ|2r dr = <
∫ 1

0

F̂ θ v̂θr dr ,

and
2Φ

π
ξ

∫ 1

0

(1− r2)|v̂θ|2r dr = =
∫ 1

0

F̂ θ v̂θr dr ,

Multiplying the equation for vθ by r(L − ξ2)v̂θ yields∫ 1

0

(
|Lv̂θ|2 + 2ξ2

∣∣∣∣1r d

dr
(r v̂θ)

∣∣∣∣2 + ξ4|v̂θ|2
)
r dr ≤ C

∫ 1

0

|F̂ θ|2r dr .

Hence,
‖vθ‖H2(Ω) ≤ C‖Fθ‖L2(Ω). (31)



Nonlinear Problem and Large Solutions

I Nonlinear stability can be obtained via a fixed point argument.

I In fact, we have the following results on the existence and
uniqueness of large solutions.

Theorem 3 Assume that F ∈ L2(Ω) and F = F(r , z) is
axisymmetric. There exist two independent constants Φ0 ≥ 1
and C0, such that if

Φ ≥ Φ0 and ‖F‖L2(Ω) ≤ Φ
1

96 , (32)

the problem for Navier-Stokes system has a unique
axisymmetric solution u, satisfying

‖u− Ū‖
H

19
12 (Ω)

≤ CΦ
1

96

and
‖ur‖L2(Ω) ≤ CΦ−

15
32 . (33)



Key Ingredients to Get Large Solutions-I

If ψ satisfies the equation

iξŪ(r)(L − ξ2)ψ̂ − (L − ξ2)2ψ̂ = ∂̂rF z . (34)

Then one has

|ξ|
∫ 1

0

Ū(r)

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr ≤
∫ 1

0

F̂ z
d

dr
(r ψ̂) dr .

Thus

Φξ2

∫ 1

0

|ψ̂|2r dr ≤ Cξ2

∫ 1

0

∫ 1

0

Ū(r)

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr ≤ C

∫ 1

0

|F̂ z |2r dr ,

and consequently,

‖v r‖L2(Ω) =

(∫
R
ξ2

∫ 1

0

|ψ̂|2rdrdξ
) 1

2

≤ CΦ− 1
2 ‖F z‖L2(Ω).



Key Ingredients to Get Large Solutions-II

If ψ satisfies the equation

iξŪ(r)(L − ξ2)ψ̂ − (L − ξ2)2ψ̂ = ∂̂zF r . (35)

Then one has

Φ|ξ|
∫ 1

0

Ū(r)

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr ≤
∣∣∣∣∫ 1

0

ξF̂ r ¯̂ψr dr

∣∣∣∣
≤|ξ|

(∫ 1

0

|F̂ r |2rdr
)1/2

(
ξ2

∫ 1

0

Ū(r)

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr

)1/2

.

Thus ∫ 1

0

|ψ̂|2rdr ≤ Φ−2

∫ 1

0

|F̂ r |2rdr .



Key Ingredients to Get Large Solutions-III

Furthermore, one has

Φ|ξ|2
∫ 1

0

Ū(r)

r

∣∣∣∣ ddr (r ψ̂)

∣∣∣∣2 dr ≤
∣∣∣∣∫ 1

0

ξ2F̂ r ¯̂ψr dr

∣∣∣∣ ≤ C

∫ 1

0

|F̂ r |2rdr .

Again, we have

‖v r‖L2(Ω) =

(∫
R
ξ2

∫ 1

0

|ψ̂|2r drdξ
) 1

2

≤ CΦ− 1
2 ‖F r‖L2(Ω).

Therefore, we always have

‖v r‖L2(Ω) ≤ CΦ− 1
2 ‖F‖L2(Ω).

Using the interpolation, we get the smallness of ‖v r‖Hs(Ω) for

s < 5
3 . Similarly, we can get the smallness for ∂zv

θ, ∂zω
θ.



Key Ingredients to Get Large Solutions-IV

The nonlinear equation for ψ has the form

Ū(r)∂z(L+ ∂2
z )ψ − (L+ ∂2

z )2ψ

=f − (v r∂r + v z∂z)ωθ +
2

r
vθ∂zv

θ +
v r

r
ωθ.

The swirl velocity vθ = vθeθ satisfies

Ū(r)∂zv
θ −∆vθ = Fθ − (v r∂r + v z∂z)vθ − v r

r
vθ. (36)

Observation: The nonlinear terms are small.



Asymptotic Behavior

Theorem 4 Assume that F = F(r , z) is axisymmetric. There exists
a constant α0 depending only on Φ, such that if F = F(r , z)
satisfies

‖eαzF‖L2(Ω) < +∞ (37)

with some α ∈ (−α0, α0), and u is an axisymmetric solution to
the steady Navier-Stokes system in a pipe, which also satisfies

‖u− Ū‖H2(Ω) < +∞, (38)

then one has
‖eαz(u− Ū)‖H2(Ω) < +∞. (39)



Remarks on Asymptotic Behavior

I Similar results were proved when Φ is small:
Horgan-Wheeler(1978), Ames-Payne(1989), Galdi, · · ·

I The key point of Theorem 4 is that there is neither smallness
assumption on the flux Φ nor the smallness on the deviation
of u with Ū.

I It is clear that the solutions obtained in Theorem 3 must
converge to Hagen-Poiseuille flows exponentially fast, if F
decays exponentially fast.

I The convergence rate of vθ can achieve Φ
1
2 .



Asymptotic Behavior for Small Perturbed Solutions

Proposition Assume that F ∈ L2(Ω), and F = F(r , z) is
axisymmetric. There exists a constant ε0, independent of F and Φ,
and a constant α0(≤ 1) depending on Φ, such that

‖eαzF‖L2(Ω) < +∞, with some α ∈ (−α0, α0), (40)

and u is an axisymmetric solution to the steady Navier-Stokes
system, satisfying

‖u− Ū‖H2(Ω) ≤ ε0, (41)

then the solution satisfies

‖eαz(u− Ū)‖H2(Ω) ≤ C‖eαzF‖L2(Ω). (42)



Observation for Small Perturbed Solutions
Let v = u− Ū, and ψ is the corresponding stream function. Then

U(r)∂z(L+ ∂2
z )(eαzψ)− (L+ ∂2

z )2(eαzψ)

=eαz f − (v r∂r + v z∂z)(L+ ∂2
z )(eαzψ) +

v r

r
(L+ ∂2

z )(eαzψ)− 2ωr e
αzvθ

r

+ U(r)
[
αL(eαzψ) + α3eαzψ − 3α2∂z(eαzψ) + 3α∂2

z (eαzψ)
]

−
[
4α∂3

z (eαzψ)− 6α2∂2
z (eαzψ) + 4α3∂z(eαzψ)− α4eαzψ

]
−
[
4αL∂z(eαzψ)− 2α2L(eαzψ)

]
+

(
v r∂r −

v r

r

)[
2α∂z(eαzψ)− α2eαzψ

]
+ αv zLeαzψ + v z

[
3α∂2

z (eαzψ)− 3α2∂z(eαzψ)− α3eαzψ
]
,

and

U(r)∂z(eαzvθ)−∆(eαzvθ) = eαzFθ − (v∗ · ∇)(eαzvθ)− v r

r
(eαzvθ)

+ U(r)αeαzvθ − 2α∂z(eαzvθ) + α2eαzvθ + v zαeαzvθ.

Observation: The right hand side is either nonlinear small or has a
small factor α.



Observation for the General Solutions
Choose a smooth cut-off function η(z) satisfying

η(z) =


0, z ≤ L,

1, z ≥ L + 1.

Note that (ψ, vθ) satisfy

U(r)∂z(L+ ∂2
z )(ηψ)− (L+ ∂2

z )2(ηψ) = ηf + f̃

− ∂r
[
v r (L+ ∂2

z )(ηψ)
]
− ∂z

[
v z(L+ ∂2

z )(ηψ)
]

+ ∂z

[
vθ

r
ηvθ
]
,

and

U(r)∂z(ηvθ)−∆(ηvθ) = ηFθ + F̃
θ − (v r∂r + v z∂z)(ηvθ)− v r

r
(ηvθ).

Observation: The terms in f̃ and F̃
θ

always contain the derivative
of η so that they are finite.



Axially Symmetric Flows under Navier Boundary Conditions

Navier boundary conditions

v · n = 0 and 2ntD(v)τ = αv · τ, when r = 1, (43)

where

D(v)ij =
∂iu

j + ∂ju
i

2
.

The Poiseuille flows can be written as

Ū(r) =
Φ

π
· 2α

4− α
r2 +

Φ

π
· 4− 2α

4− α
.

I Using the similar idea, we can obtain the similar and better
results for axially symmetric flows with Navier slip boundary
conditions.

I Stability results: Ding, Li and Xin(2018), etc.



Summary and Further Problems

Summary

I Viscous flows in pipes

Problems:

I Global uniqueness/Liouville type theorem

I Viscous Steady flows in general nozzles

I Hydrodynamical stability and instability of Poiseuille flows

I ...



Thanks!


