Global weak solutions to a three－dimensional compressible non－Newtonian fluid with vacuum

Zhenhua Guo

Join work with Li Fang
CNS and School of Mathematics，Northwest University
Nonlinear PDEs and Related Topics，IMS，National University of Singapore

$$
\text { 2019. 12. } 30
$$

outline

－Models
－Motivations
－Main results
－Key points of Proofs

[^0]The equations of a compressible viscous barotropic fluid in $(x, t) \in \Omega \times \mathbb{R}^{+}$have the following form

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{1}\\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)=\operatorname{div}(\mathbb{P})+\rho f .
\end{array}\right.
$$

ρ-density; $u=\left(u_{1}, u_{2}, u_{3}\right)$-velocity; \mathbb{P}-the stress tensor; f-the vector of external mass forces; the operators div and ∇ act with respect to the space variables x.

The initial data is given by

$$
\left.(\rho, \rho u)\right|_{t=0}=\left(\rho_{0}, m_{0}\right)(x), x \in \Omega,
$$

and the no-slip boundary condition on the velocity

$$
\left.u\right|_{\partial \Omega}=0
$$

The system (1) must be closed by some constitutive equation for the stresses \mathbb{P}. Taking the Stokes axioms for the (only) criterion of its "physical validity," we restrict ourselves to constitutive relations of the following form

$$
\begin{equation*}
\mathbb{P}=\sum_{k=0}^{2} \alpha_{k}\left(\rho, \operatorname{div} u,|\mathbb{D} u|^{2}\right) \mathbb{D}^{k} u \tag{2}
\end{equation*}
$$

$\mathbb{D} u$-the deformation velocity tensor with components
$D_{i j} u=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right) ;$
$|\mathbb{D} u|^{2} \equiv \mathbb{D} u: \mathbb{D} u=\sum_{i, j=1}^{3}\left(D_{i, j} u\right)^{2}$.
One particular case of equation (3)

$$
\begin{equation*}
\mathbb{P}=-p(\rho)+\lambda\left(|\operatorname{div} u|^{2}\right) \operatorname{div} u \mathbb{I}+2 \mu\left(|\mathbb{D} u|^{2}\right) \mathbb{D} u \tag{3}
\end{equation*}
$$

which is a natural generalization of the constitutive relation in the classical fluid model.

The incompressible non-Newtonian fluids

$$
\left\{\begin{array}{l}
\rho_{t}+\operatorname{div}(\rho u)=0 \\
(\rho u)_{t}+\operatorname{div}(\rho u \otimes u)-\operatorname{div}(\Gamma)+\nabla P=\rho f \\
\operatorname{div} u=0
\end{array}\right.
$$

where Γ denotes the viscous stress tensor and

$$
\Gamma_{i j}=\left(\mu_{0}+\mu_{1}|\mathbb{D} u|\right)^{r-2} \mathbb{D}_{i, j} u
$$

with $\mu_{0}>0, \mu_{1}>0$ are constants.
This form of Γ is proposed by O.A. Ladyzhenskaya 1970.

The incompressible non-Newtonian fluids
-Existence of weak solutions
Ladyzhenskaya, Lions, Nečas, Zhikov, Kaniel, Frehse, Málek, Steinhauer, Boling Guo......
-The global attractor
Boling Guo, Guoguang Lin, Yadong Shang, Caidi Zhao, Yongsheng Li, i,......

The compressible non-Newtonian fluids

$$
\left\{\begin{array}{l}
\rho_{t}+\operatorname{div}(\rho u)=0 \\
(\rho u)_{t}+\operatorname{div}(\rho u \otimes u)-\operatorname{div}(\Gamma)+\nabla P=\rho f
\end{array}\right.
$$

where Γ denotes the viscous stress tensor and

$$
\Gamma_{i j}=\left(\mu_{0}+\mu_{1}|\mathbb{D} u|\right)^{r-2} \mathbb{D}_{i, j} u
$$

with $\mu_{0} \geq 0, \mu_{1}>0$ are constants.

These models are called :
Newtonian, for $\mu_{0}>0, \mu_{1}=0$;
Rabinowitsch, for $\mu_{0}, \mu_{1}>0, r=4$;
Eills, for $\mu_{0}, \mu_{1}>0, r>2$;
Ostwald-de Waele, for $\mu_{0}=0, \mu_{1}>0, r>4$;
Bingham, for $\mu_{0}, \mu_{1}>0, r=1$;
For $\mu_{0}=0$, if $r<2$, it is a pseudo-plastic fluid; if $r>2$, it is a dilant fluid;
In the view of physics:
$1<r<2$: shear thinning fluid
$r>2$: shear thickening fluid.

\diamond One-dimension

-Local existence of strong/classical solution

- Hongjun Yuan and his team, Qin Yumin, Guo Zhenhua, Fang Li, Wang Yuxin......
—Asymptotic stability/Large-time behavior of solution
- Shi-Wang-Zhang (2014): Asymptotic stability
- Guo-Fang (2016): Zero dissipation limit to rarefaction wave with vacuum
- Guo-Dong-Liu (2019): Large-time behavior of solution to an inflow problem on the half space
- Guo-Su-Liu: The existence and limit behavior of the shock layer for 1D steady compressible non-Newtonian fluids
- other results

Motivations

\diamond Multi-dimension
-Existence of weak solution
Feireisl, Liao and Málek, Zhikov and Pastukhova, Mamontov,

Motivations

Feireisl-Liao-Málek considered the following compressible non-Newtonian fluid in $(x, t) \in \Omega \times \mathbb{R}_{+}$,

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0, \tag{4}\\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\nabla p(\rho) \\
\quad=\operatorname{div}\left(2 \mu_{0}\left(1+\left|\mathbb{D}^{d} u\right|^{2}\right)^{\frac{r-2}{2}} \mathbb{D}^{d} u+\eta(\operatorname{div} u) \operatorname{div} u \mathbb{I}\right)
\end{array}\right.
$$

where i) $\mathbb{D}^{d} u=\mathbb{D} u-\frac{1}{3}(\operatorname{tr} \mathbb{D} u) \mathbb{I}, \mu_{0}>0$ is a constant, $r \in\left[\frac{11}{5},+\infty\right)$;
ii) the bulk viscosity coefficient η is a continuous function of $\operatorname{div} u$, $\eta(z):\left(-\frac{1}{b}, \frac{1}{b}\right) \rightarrow[0,+\infty)$ such that there is a convex potential $\Lambda: \mathbb{R} \rightarrow[0, \infty]$

$$
\begin{cases}\Lambda(0)=0, & \Lambda^{\prime}(z)=z \eta(z) \\ \Lambda(z) \rightarrow \infty & \text { if } z \rightarrow \pm \frac{1}{b} \\ \Lambda(z)=\infty & \text { if }|z| \geqslant \frac{1}{b}\end{cases}
$$

iii) the pressure $p=p(\rho)$ and the Helmholtz free energy $\psi=\psi(\rho)$ satisfy

$$
p=\rho^{2} \psi^{\prime}(\rho), \quad p \in C[0, \infty) \cap C^{1}(0,+\infty), \quad p(0)=0, \quad p^{\prime}(\rho)>0 \text { for } \rho>0 .
$$

Motivations

The definition of weak solution in the work Feireisl-Liao-Málek A pair of functions (ρ, u) is said to be a weak solution to the problem (4) on ($0, T$) for any fixed $T>0$ if the following conditions hold:

- $\rho \in C\left([0, T] ; L^{1}(\Omega)\right) \cap L^{\infty}(\Omega \times(0, T))$,

$$
u \in L^{r}\left(0, T ; W_{0}^{1, r}(\Omega)\right), \eta(|\operatorname{div} u|)|\operatorname{div} u|^{2} \in L^{1}(\Omega \times(0, T)) ;
$$

- The equation of continuity in (4) is satisfied in $\mathcal{D}^{\prime}(\Omega \times(0, T))$;
- The following weak formulation of the momentum equation

$$
\begin{aligned}
& {\left.\left[\frac{1}{2} \int_{\Omega} \rho|u|^{2} d x\right]\right|_{0} ^{\tau}-\left.\left[\int_{\Omega} \rho u \cdot \varphi d x\right]\right|_{0} ^{\tau}+\int_{0}^{\tau} \int_{\Omega}\left[\rho u \cdot \partial_{t} \varphi+\rho u \otimes u: \nabla \varphi\right] d x d t} \\
& +\int_{0}^{\tau} \int_{\Omega}|\mathbb{D} u|^{r-1} \mathbb{D} u: \mathbb{D}(u-\varphi) d x d t+\int_{0}^{\tau} \int_{\Omega} p(\rho) \operatorname{div}(\varphi-u) d x d t \\
& \leqslant \frac{\int_{0}^{\tau} \int_{\Omega}[\Lambda(\operatorname{div} \varphi)-\Lambda(\operatorname{div} u)] d x d t(\text { control the term } \eta(|\operatorname{div} u|) \operatorname{div} u)}{\eta(\operatorname{div} u):\left(-\frac{1}{b},-\frac{1}{b}\right) \rightarrow[0,+\infty)}
\end{aligned}
$$

for any $\tau \in[0, T]$ and any test function $\varphi \in C_{c}^{\infty}(\Omega \times[0, T])$.

Feireisl-Liao-Málek (2015) showed the large-data existence result of weak solutions to the initial-boundary problem to the system (4)
with nonlinear constitutive equations that guarantee that the divergence of the velocity field remains bounded, provided the initial density is without vacuum.

Zhikov-Pastukhova (2009) considered a compressible fluid in $(x, t) \in \Omega \times \mathbb{R}_{+}$, described by

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0, \tag{5}\\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\nabla \rho^{\gamma} \\
\quad=\operatorname{div}\left(|\mathbb{D} u|^{r-2} \mathbb{D} u+\nu|\operatorname{div} u|^{r-2} \mathbb{I}\right)
\end{array}\right.
$$

where $\nu \geqslant 0$ is a constant, $\gamma>1, r>1$.

The definition of weak solution in the work Zhikov and Pastukhova A pair of functions (ρ, u) is said to be a weak solution to the problem (5) on ($0, T$) for any fixed $T>0$ if the following conditions hold:
(1) $\rho \in C\left([0, T] ; L^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{\gamma}(\Omega)\right)$,
$u \in L^{r}\left(0, T ; W_{0}^{1, r}(\Omega)\right), \rho u \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) ;$
(2) The equations (5) is satisfied in $\mathcal{D}^{\prime}(\Omega \times(0, T))$;
(3) $\lim _{t \rightarrow 0} \rho=\rho_{0}$ in $L^{1}(\Omega)$,
$\lim _{t \rightarrow 0} \int_{\Omega} \rho u \cdot \varphi d x=\int_{\Omega} m_{0} \cdot \varphi d x \quad \forall \varphi \in C_{0}^{\infty}(\Omega)$.

Zhikov and Pastukhova (2009) proved that the initial-boundary problem to the system (6) admits a weak solution such that

$$
\rho u^{2} \in L^{\frac{r}{r-1}}(\Omega \times(0, T)), \rho^{\gamma} \in L^{\frac{r}{r-1}}(\Omega \times(0, T))
$$

provided that $\rho_{0} \in L^{\gamma}(\Omega), \frac{m_{0}}{\rho_{0}} \in L^{1}(\Omega), \gamma>\frac{3}{2}, r \geqslant 3$.

Mamontov (1999) considered a compressible fluid in $(x, t) \in \Omega \times \mathbb{R}_{+}$, described by

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0, \tag{6}\\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u) \\
\quad=\operatorname{div}\left(2 \mu\left(|\mathbb{D} u|^{2}\right) \mathbb{D} u+\lambda\left(|\operatorname{div} u|^{2}\right) \operatorname{div} u \mathbb{I}\right)
\end{array}\right.
$$

where $\mu(s)=\exp \left(s^{\epsilon_{0}}\right)\left(\epsilon_{0}>0\right.$ a constant $), \lambda(s)=\exp (\sqrt{s})$.
Mamontov showed the existence of global solutions of multidimensional equations of motion of a compressible non-Newtonian fluid in Bürgers approximation (in the absence of pressure), on the basis of the techniques of Orlicz spaces.

Global weak solution to the multi-dimensional compressible Navier-Stokes equations for general initial data with finite energy:
—Lions (Oxford 1998), Feireisl-Novotny-Petzeltová (JMFM, 2001), Jiang-Zhang (CMP, 2001),

Question: For general initial data with finite energy, what about the existence of global weak solution to the multi-dimensional compressible non-Newtonian fluid containing vacuum for the general case $r>1$?

Consider the initial-boundary value problem for the isentropic compressible non-Newtonian fluid with vacuum

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{x}(\rho u)=0 \tag{7}\\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\nabla p \\
\quad=\operatorname{div}\left(|\mathbb{D} u|^{r-2} \mathbb{D} u+\eta(|\operatorname{div} u|) \operatorname{div} u \mathbb{I}\right)
\end{array}\right.
$$

with the initial data

$$
\begin{equation*}
\left.(\rho, \rho u)\right|_{t=0}=\left(\rho_{0}, m_{0}\right)(x), x \in \Omega \tag{8}
\end{equation*}
$$

and the no-slip boundary condition on the velocity

$$
\begin{equation*}
\left.u\right|_{\partial \Omega}=0 \tag{9}
\end{equation*}
$$

Notice: This model can describe the motion of electrons in an electric field.

Definition A pair of functions (ρ, u) is said to be a finite energy weak solutions to the problem (7)-(9) on ($0, T$) for any fixed $T>0$ if the following conditions hold:

- $\rho \geqslant 0, \rho \in C\left([0, T] ; L^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{\gamma}(\Omega)\right)$,
$u \in L^{r}\left(0, T ; W_{0}^{1, r}(\Omega)\right), \eta(|\operatorname{div} u|)|\operatorname{div} u|^{2} \in L^{1}(\Omega \times(0, T)) ;$
- The equations (7) hold in $\mathcal{D}^{\prime}(\Omega \times(0, T))$ and

$$
\int_{0}^{\tau} \int_{\Omega}\left[\rho \partial_{t} \varphi+\rho u \cdot \nabla \varphi\right] d x d t=\left.\left[\int_{\Omega} \rho \varphi d x\right]\right|_{0} ^{\tau}
$$

for any $\tau \in[0, T]$ and any test function $\varphi \in C^{\infty}(\Omega \times[0, T])$
with $\varphi(x, 0)=\varphi(x, T)=0$ for $x \in \Omega$;

- The functions ρ and ρu satisfy the initial conditions in the weak sense.

Remark

- Any weak solution in Definition satisfy the equations (7) hold in $\mathcal{D}^{\prime}(\Omega \times(0, T))$, which is different from the definition of weak solution in the work Feireisl-Liao-Málek.
- Any weak solution in Definition satisfies the following weak formulation of the momentum equation

$$
\begin{aligned}
& {\left.\left[\frac{1}{2} \int_{\Omega} \rho|u|^{2} d x\right]\right|_{0} ^{\tau}-\left.\left[\int_{\Omega} \rho u \cdot \varphi d x\right]\right|_{0} ^{\tau}+\int_{0}^{\tau} \int_{\Omega}\left[\rho u \cdot \partial_{t} \varphi+\rho u \otimes u: \nabla \varphi\right] d x d t} \\
& +\int_{0}^{\tau} \int_{\Omega}|\mathbb{D} u|^{r-1} \mathbb{D} u: \mathbb{D}(u-\varphi) d x d t+\int_{0}^{\tau} \int_{\Omega} p(\rho) \operatorname{div}(\varphi-u) d x d t \\
& \leqslant \int_{0}^{\tau} \int_{\Omega}[\Lambda(\operatorname{div} \varphi)-\Lambda(\operatorname{div} u)] d x d t \\
& \text { for any } \tau \in[0, T] \text { and any test function } \varphi \in C_{c}^{\infty}(\Omega \times[0, T]) \text {, } \\
& \text { where } \Lambda^{\prime}(z)=\eta(z) z \text { and } \Lambda^{\prime \prime}(z) \geqslant 0 .
\end{aligned}
$$

Theorem 1 Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain of class $C^{2+\nu}$ for some $\nu>0$ and $\eta(z)=|z|^{q-1}$. Suppose that the following conditions hold:
(i) the pressure $p(\rho)$ is given by $p(\rho)=\rho^{\gamma}$ with the adiabatic exponent $\gamma>\frac{3}{2}$;
(ii) the initial data satisfy

$$
\left\{\begin{array}{l}
\rho_{0} \in L^{\gamma}(\Omega), \rho_{0} \geqslant 0 \text { on } \Omega \\
\frac{\left|m_{0}\right|^{2}}{\rho_{0}} \in L^{1}(\Omega)
\end{array}\right.
$$

(iii) the positive constants r and q satisfy the case that $\frac{12}{5} \leqslant r<3$ and $q>\max \{\gamma, 9\}$, or the case that $r \geqslant 3$ and $q>1$.
Then, the initial-boundary value problem (7)-(9) admits a finite energy weak solution (ρ, u) on $\Omega \times(0, T)$ for any given $T>0$.

Theorem 2 Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain of class $C^{2+\nu}$ for some $\nu>0$ and $\eta(z)=|z|^{q-1}$. Suppose that the following conditions hold:
(i) the pressure $p(\rho)$ is given by

$$
\begin{cases}p^{\prime}(s) \geqslant a_{1} s^{\gamma-1} \text { for all } s>0, & p(s) \leqslant a_{2} s^{\gamma} \text { for all } s \geqslant 0, \tag{10}\\ p \in C[0, \infty) \cap C^{1}(0, \infty), & p(0)=0\end{cases}
$$

with the adiabatic exponent $\gamma>\frac{3}{2}$;
(ii) the initial data satisfy

$$
\left\{\begin{array}{l}
\rho_{0} \in L^{\gamma}(\Omega), \rho_{0} \geqslant \underline{\rho}>0 \text { on } \Omega \\
\frac{\left|m_{0}\right|^{2}}{\rho_{0}} \in L^{1}(\Omega)
\end{array}\right.
$$

(iii) the positive constants p and q satisfy the case that $\frac{11}{5} \leqslant r<3$ and $q>\max \{\gamma, 9\}$, or the case that $r \geqslant 3$ and $q>1$. Then, the initial-boundary value problem (7)-(9) admits a finite energy weak solution (ρ, u) on $\Omega \times(0, T)$ for any given $T>0$.

Remark

(i) The solution constructed in Theorem 1-2 admits that

$$
\begin{aligned}
& \rho^{\gamma} \in L^{\frac{q+1}{q}}(\Omega \times(0, T))\left(\text { when } \frac{12}{5} \leqslant r<3 \text { and } q>\max \{\gamma, 9\}\right), \\
& \text { or } \rho^{\gamma} \in L^{\frac{r+1}{r}}(\Omega \times(0, T))(\text { when } r \geqslant 3 \text { and } q>1) \\
& \operatorname{div} u \in L^{q+1}(\Omega \times(0, T)) \text { and } \nabla u \in L^{r}(\Omega \times(0, T))
\end{aligned}
$$

(ii) The solution constructed in Theorem 1 and Theorem 2 will satisfy the continuity equation in the sense of re-normalized solutions.
(iii) Our results also hold for the bulk viscosity coefficient $\eta(|\operatorname{div} u|) \sim|\operatorname{div} u|^{q-1}$, where the symbol \sim refers that there exist positive constants C_{1} and C_{2} such that

$$
C_{1}|\operatorname{div} u|^{q-1} \leqslant \eta(|\operatorname{div} u|) \leqslant C_{2}|\operatorname{div} u|^{q-1}
$$

and $\eta(z)+z \eta^{\prime}(z)>0$ holds for any $z>0$.

Main difficulties and the countermeasure in proof of Theorems

（1）The initial density containing vacuum and strong degeneracy of the term $\operatorname{div}\left(|\mathbb{D} u|^{r-2} \mathbb{D} u\right)$ in momentum equations Inspired by Jiang－Zhang－2001 and Chapter 7 in Feireisl－2004，we introduce an approximate problem

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=\epsilon \Delta \rho \tag{11}\\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\nabla\left(p+\delta \rho^{\beta}\right)+\epsilon \nabla u \cdot \nabla \rho \\
=\operatorname{div}\left(\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u+\eta(|\operatorname{div} u|) \operatorname{div} u \mathbb{I}\right)
\end{array}\right.
$$

with the initial－boundary conditions

$$
\begin{cases}\left.\nabla \rho \cdot n\right|_{\partial \Omega}=0, & \left.\rho\right|_{t=0}=\rho_{0, \delta} \tag{12}\\ \left.u\right|_{\partial \Omega}=0, & \left.\rho u\right|_{t=0}=m_{0, \delta}\end{cases}
$$

(2) The strong nonlinearity for the pressure term $p(\rho)$ and the term $\operatorname{div}\left(|\mathbb{D} u|^{r-2} \mathbb{D} u\right)$.

The difficulty comes from the nonlinear term

$$
\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u+\eta(|\operatorname{div} u|) \operatorname{div} u \mathbb{I}
$$

in the approximate problem.
Recall that $\eta(z)=|z|^{q-1}, \Lambda^{\prime}(z)=\eta(z) z$ and $\Lambda^{\prime \prime}(z) \geqslant 0$, one can deduce that

$$
\overline{\eta(\operatorname{div} u) \operatorname{div} u}=\eta(\operatorname{div} u) \operatorname{div} u .
$$

So we need focus on the first term of the above nonlinear term.

Step 1．Limit in the Galerkin approximation
The approximate problem（11）－（12）with fixed positive parameters
ϵ and δ can be solved by means of a modified Faedo－Galerkin method．

Step 2．The vanishing limits of the artificial viscosity $\epsilon \rightarrow 0$ ．
The common difficulty in the Step 1 and the Step 2 ：
The nonlinear term

$$
\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u
$$

in the approximate problem．

The key tool to deal with the nonlinear term above
Let $A_{\epsilon}(x, \xi)$ and $A(x, \xi)$ be Carathéodory vector functions.
$A_{\epsilon}(x, \xi), A(x, \xi): \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, where Ω is a bounded domains in \mathbb{R}^{d}. The Carathéodory property means continuity with respect to $\xi \in \mathbb{R}^{d}$ for a.e. $x \in \Omega$ and measurability with respect to x for any ξ. These vector functions are assumed to satisfy the minimal monotonicity and convergence conditions

$$
\begin{array}{cl}
\left(A_{\epsilon}(x, \xi)-A_{\epsilon}(x, \eta)\right) \cdot(\xi-\eta) \geqslant 0, & A_{\epsilon}(x, 0) \equiv 0 \\
\left|A_{\epsilon}(x, \xi)\right| \leqslant c_{0}(|\xi|)<\infty, & \lim _{\epsilon \rightarrow 0} A_{\epsilon}(x, \xi)=(x, \xi)
\end{array}
$$

for a.e. $x \in \Omega$ and any $\xi \in \mathbb{R}^{d}$.

Lemma

Suppose that $v_{\epsilon} \rightharpoonup v, \quad A_{\epsilon}\left(x, v_{\epsilon}\right) \rightharpoonup z$ in $L^{1}(\Omega)$. Let $K \subset \Omega$ be a measurable set such that $z \cdot v \in L^{1}(K)$. Then

$$
\lim \inf _{\epsilon \rightarrow 0} \int_{K} A_{\epsilon}\left(x, v_{\epsilon}\right) \cdot v_{\epsilon} d x \geqslant \int_{K} z \cdot v d x
$$

and, in the case of equality,

$$
\left.z\right|_{K}=\left.A\right|_{K}, \quad A=A(x, v)
$$

We employ the following weak formulation of the momentum equation in the approximate problem

$$
\begin{align*}
& {\left.\left[\frac{1}{2} \int_{\Omega} \rho|u|^{2} d x\right]\right|_{0} ^{\tau}-\left.\left[\int_{\Omega} \rho u \cdot \varphi d x\right]\right|_{0} ^{\tau}} \\
& +\int_{0}^{\tau} \int_{\Omega}\left(\rho u \cdot \partial_{t} \varphi+\rho u \otimes u: \nabla \varphi\right) d x d t \\
& +\int_{0}^{\tau} \int_{\Omega}\left(p(\rho)+\delta \rho^{\beta}\right)(\operatorname{div} \varphi-\operatorname{div} u) d x d t-\int_{0}^{\tau} \int_{\Omega} \epsilon \nabla \rho \cdot \nabla u \cdot \varphi d x d t \\
& +\int_{0}^{\tau} \int_{\Omega}\left(\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}}|\mathbb{D} u|^{2}}-\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u}: \mathbb{D} \varphi\right) d x d t \\
& \leqslant \int_{0}^{\tau} \int_{\Omega}[\Lambda(\operatorname{div} \varphi)-\Lambda(\operatorname{div} u)] d x d t \text { for } \text { a.e. } \tau \in[0, T] \tag{13}
\end{align*}
$$

The family of regularized Kernels

$$
\eta_{h}(t):=\frac{1}{h} \mathbb{I}_{[-h, 0]}(t) \text { and } \eta_{-h}(t):=\frac{1}{h} \mathbb{I}_{[0, h]}(t)(h>0),
$$

together with the cut-off functions

$$
\xi_{\sigma} \in C_{c}^{\infty}(0, \tau), \quad 0 \leqslant \xi \leqslant 1, \quad \xi_{\sigma}(t)=1
$$

whenever $t \in[\sigma, \tau-\sigma], \quad \sigma>0$. Noticing that $\eta_{h} * u=\frac{1}{h} \int_{t}^{t+h} u d s \in W^{1, r}\left(0, T ; W_{0}^{1, r}(\Omega)\right)$, we can take the quantities

$$
\varphi_{h, \sigma}=\xi_{\sigma} \eta_{-h} * \eta_{h} *\left(\xi_{\sigma} u\right)(\sigma, h>0)
$$

as test functions in (13).

By careful calculation, we can arrive at
$\int_{0}^{\tau} \int_{\Omega}\left(\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}}|\mathbb{D} u|^{2}}-\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u}: \mathbb{D} u\right) d x d t \leqslant 0$,
based on the fact that

$$
\begin{aligned}
& \lim _{\sigma \rightarrow 0} \lim _{h \rightarrow 0} \int_{0}^{\tau} \int_{\Omega}\left(\Lambda\left(\operatorname{div} \varphi_{h, \sigma}\right)-\Lambda(\operatorname{div} u)\right) d x d t=0, \\
& {\left[\int_{\Omega} \rho u \cdot \varphi_{h, \sigma} d x\right]_{0}^{\tau}=0(\text { for all } \sigma, h>0)}
\end{aligned}
$$

So together with Fatou's lemma,
$\lim _{\sigma \rightarrow 0} \lim _{h \rightarrow 0} \int_{0}^{\tau} \int_{\Omega}\left(\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}}|\mathbb{D} u|^{2}}-\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u}: \mathbb{D} \varphi_{h, \sigma}\right) d x d t$ $\geqslant 0$
it ensures that

$$
\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u}=\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u
$$

and

$$
\overline{\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}}|\mathbb{D} u|^{2}}=\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}}|\mathbb{D} u|^{2} .
$$

Step 3. The artificial pressure coefficient $\delta \rightarrow 0$.
3.1 The density estimates.

Lemma

There exists a positive constant C, independence of δ, such that

$$
\int_{0}^{T} \int_{\Omega}\left(\rho_{\delta}^{\frac{q+1}{q} \gamma}+\delta \rho_{\delta}^{\beta+\frac{\gamma}{q}}\right) d x d t \leqslant C
$$

holds for the case that $\frac{11}{5} \leqslant r<3$ and $q>\max \{\gamma, 9\}$, and

$$
\int_{0}^{T} \int_{\Omega}\left(\rho_{\delta}^{\frac{r}{r-1} \gamma}+\delta \rho_{\delta}^{\beta+\frac{\gamma}{r-1}}\right) d x d t \leqslant C
$$

holds for the case that $r \geqslant 3$ and $q>1$.
3.2 The amplitude of oscillations.

For the cut-off operators introduced in Feireisl-2004 and Jiang-Zhang-2001, we consider a family of functions

$$
\begin{equation*}
T_{k}(z)=k T\left(\frac{z}{k}\right) \text { for } z \in \mathbb{R}, k=1,2, \cdots \tag{14}
\end{equation*}
$$

where $T \in C^{\infty}(\mathbb{R})$ is chosen so that

$$
T(z)=z \text { for } z \leqslant 1, T(z)=2 \text { for } z \geqslant 3, T \text { concave. }
$$

Lemma

There exists a positive constant C, independence of k, such that

$$
\lim _{\delta \rightarrow 0} \sup \left\|T_{k}\left(\rho_{\delta}\right)-T_{k}(\rho)\right\|_{L^{\frac{q+1}{q} \gamma}(\Omega \times(0, T))} \leqslant C
$$

holds for the case that $\frac{12}{5} \leqslant r<3$ and $q>\max \{\gamma, 9\}$,

$$
\lim _{\delta \rightarrow 0} \sup \left\|T_{k}\left(\rho_{\delta}\right)-T_{k}(\rho)\right\|_{L^{\gamma+1}(\Omega \times(0, T))} \leqslant C
$$

holds for the case that $r \geqslant 3$ and $q>1$.
Remark. The limit functions ρ and u satisfy the continuity equation $(4)_{1}$ in the sense of renormalized solutions.
3.3 The momentum equation.

The first key point is to prove $\overline{\rho^{\gamma}}=\rho^{\gamma}$. The following integrability properties of the limit functions ρ and u, play an important role, which are stated as

$$
\begin{aligned}
& \rho^{\gamma} \in L^{\frac{q+1}{q}}(\Omega \times(0, T))\left(\frac{12}{5} \leqslant r<3 \text { and } q>\max \{\gamma, 9\}\right), \\
& \text { or } \rho^{\gamma} \in L^{\frac{r}{r-1}}(\Omega \times(0, T))(r \geqslant 3 \text { and } q>1) \text {, } \\
& \operatorname{div} u \in L^{q+1}(\Omega \times(0, T)) \text { and } \nabla u \in L^{r}(\Omega \times(0, T)), \\
& \rho u^{2} \in L^{\frac{r}{r-1}}(\Omega \times(0, T)) \text {. }
\end{aligned}
$$

Difficulty from vacuum in initial density in Theorem 1

The second key equality $|\mathbb{D} u|^{r}=|\mathbb{D} u|^{r}$ is obtained by applying the technique in the following inequality

$$
\begin{align*}
& {\left.\left[\frac{1}{2} \int_{\Omega} \rho|u|^{2} d x\right]\right|_{0} ^{\tau}-\left.\left[\int_{\Omega} \rho u \cdot \varphi d x\right]\right|_{0} ^{\tau}} \\
& +\int_{0}^{\tau} \int_{\Omega}\left(\rho u \cdot \partial_{t} \varphi+\rho u \otimes u: \nabla \varphi\right) d x d t \\
& +\int_{0}^{\tau} \int_{\Omega} \rho^{\gamma}(\operatorname{div} \varphi-\operatorname{div} u) d x d t+\int_{0}^{\tau} \int_{\Omega}\left(\overline{\left.\overline{\mathbb{D}} u\right|^{r}}-\overline{|\mathbb{D} u|^{r-2} \mathbb{D} u}: \mathbb{D} \varphi\right) d x d t \\
& \leqslant \int_{0}^{\tau} \int_{\Omega}(\Lambda(\operatorname{div} \varphi)-\Lambda(\operatorname{div} u)) d x d t \text { for } a . e . \tau \in[0, T] \tag{15}
\end{align*}
$$

In Theorem 2, the pressure $p(\rho)$ is given by

$$
\begin{cases}p^{\prime}(s) \geqslant a_{1} s^{\gamma-1} \text { for all } s>0, & p(s) \leqslant a_{2} s^{\gamma} \text { for all } s \geqslant 0, \\ p \in C[0, \infty) \cap C^{1}(0, \infty), & p(0)=0\end{cases}
$$

with the adiabatic exponent $\gamma>\frac{3}{2}$; and the initial data satisfy

$$
\left\{\begin{array}{l}
\rho_{0} \in L^{\gamma}(\Omega), \rho_{0} \geqslant \underline{\rho}>0 \text { on } \Omega \\
\frac{\left|m_{0}\right|^{2}}{\rho_{0}} \in L^{1}(\Omega)
\end{array}\right.
$$

The approximate problem is still adopted as

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=\epsilon \Delta \rho \\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\nabla\left(p+\delta \rho^{\beta}\right)+\epsilon \nabla u \cdot \nabla \rho \\
\quad=\operatorname{div}\left(\left(\delta+|\mathbb{D} u|^{2}\right)^{\frac{r-2}{2}} \mathbb{D} u+\eta(|\operatorname{div} u|) \operatorname{div} u \mathbb{I}\right)
\end{array}\right.
$$

with the initial-boundary conditions

$$
\begin{cases}\left.\nabla \rho \cdot n\right|_{\partial \Omega}=0, & \left.\rho\right|_{t=0}=\rho_{0, \delta} \\ \left.u\right|_{\partial \Omega}=0, & \left.\rho u\right|_{t=0}=m_{0, \delta}\end{cases}
$$

The difference between proof of Theorem 2 and Theorem 1 is the pressure term.
The limit in the Galerkin approximation and the vanishing limits of the artificial viscosity $\epsilon \rightarrow 0$ can be settled by the similar way in proof of Theorem 1.

In the artificial pressure coefficient $\delta \rightarrow 0$, one can arrive at

$$
\int_{0}^{\tau} \int_{\Omega}(\overline{p(\rho)} \operatorname{div} u-\overline{p(\rho) \operatorname{div} u}) d x d t \leqslant 0 \text { for a.a } \tau \in[0, T] .
$$

To deal with $\overline{\rho P(\rho)}-\rho P(\rho)$, the convexity of the function $z P(z)$ with $P(z)=\int_{1}^{z} \frac{p(s)}{s^{2}} d s$ and the initial density without vacuum play an important role.
Since the initial density is without vacuum, the convexity of the function $z P(z)$ implies that there exists a certain $\alpha>0$ such that

$$
\int_{\Omega}[\overline{\rho P(\rho)}-\rho P(\rho)] d x \geqslant \alpha \lim \sup _{\delta \rightarrow 0} \int_{\Omega}\left|\rho_{\delta}-\rho\right|^{2} d x
$$

The constant $\alpha>0$ in above inequality depends on the positive lower bound of the initial density This is different way to deal with the initial density being without vacuum.

Thank you for your attention!

[^0]: 吅（占

