
Computability over HF(R)
Some earlier results

The basic result
Corollaries

On Σ�preorderings in HF(R)

A.S. Morozov

Sobolev Institute of Mathematics, Novosibirsk, Russia

morozov@math.nsc.ru

A.S. Morozov Singapore, 2019
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HF(R): what is it?

HF(R): hereditarily �nite superstructure over R

Basic set: all the sets which can be explicitly written down using {,
}, ∅, r (r ∈ R).

Examples: ∅, {∅,
√

2}, {7, {{∅, 92}, 3, {∅}}}, etc.

Σ�formulas: a speci�c class of formulas that de�ne analogs of c.e.

sets (we omit the de�nition).

One can also consider hereditarily �nite superstructures HF(M) for

any structure M of �nite predicate signature.
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Why HF(R)?

De�nability by means of Σ�formulas over HF(R) can be viewed as

�computable enumerability� in a high level programming language

in which we have exact realizations of the �eld R of real numbers

and in addition we can compute (and use in further computations)

all the roots of polynomial equations from their coe�cients.
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Σ�presentability of structures

Σ�Presentable structures: analog of the notion of computable

structures (c.e. is replaced with Σ�de�nability)

A presentation of an algebraic structure M of a �nite predicate

signature is any assignment of codes from some A ⊆ HF(R) to its

elements, i.e., a mapping ν : A ⊆ HF(R)
onto−→ |M|.

If ν is 1�1 then ν is said to be simple.

If D(M, ν) is Σ�de�nable with parameters in HF(R) then ν is

a Σ�presentation of M over HF(R).

If D+(M, ν) (the positive diagram) is Σ�de�nable with

parameters in HF(R) then ν is said to be a positive

Σ�presentation of M over HF(R).
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Theorem (Yu.L. Ershov, 1985, 1995)

R and C have no Σ�presentations in a hereditarily �nite

superstructure over an in�nite set.

C has a Σ�presentation over any dense linearly ordered set of

cardinality 2ω.

R has no Σ�presentations over such superstructures.
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Theorem (M. and M. Korovina)

If a structure has a Σ�presentation over HF(R) without

parameters such that each its element has at most countable

set of codes, then this structure has a computable copy.

Without restrictions on the cardinalities of sets of codes for

elements, there are structures of arbitrarily high

hyperarithmetical complexity (still without parameters!).

If a countable structure has a Σ�presentation over HF(R) then

it has an isomorphic hyperarithmetical copy.

Each at most countable structure has a Σ�presentation over

HF(R) with at most one parameter.
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Model existence theorem

Theorem (M.)

Any countable consistent theory with in�nite models has a model of

cardinality 2ω which is Σ�de�nable over HF(R).
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(M.) Some structures without simple Σ�presentations over HF(R):

the Boolean algebra of all subsets of ω and its quotient

modulo the ideal of �nite sets

the group of all permutations on ω and its quotient modulo

the subgroup of all �nitary permutations

the semigroup of all mappings from ω to ω

the lattices of all open and all closed subsets of the reals

the group of all permutations of R Σ�de�nable over HF(R)

the semigroup of all such mappings from R to R
the semigroup of all continuous functions from R to R
some structures of nonstandard analysis (including ultrapowers

of R modulo Fr�echet ultra�lter with distinguished in�nitesimal

and standard elements)
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Number of Σ�presentations

Theorem

There exist 2ω pairwise non Σ�isomorphic presentations of the

natural ordering < on R.
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The basic result

Theorem

Suppose that 4 and L are subsets of HF(R) de�nable by means of

Σ�formulas with parameters and 4 is a preordering on L. Then
there is no isomorphic embedding from ω1 into 〈L;4〉.

Remark The above result fails to be true for Borel preorders:

〈P(ω);⊆∗〉 can serve as a counterexample.
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Idea of the proof (1):

De�nition

sp(a): support of a, the set of all the reals that are `mentioned' in a.

Examples:

sp(∅) = ∅, sp({1, {1}}) = {1},
sp({0, {1, 2, {

√
3}}}) = {0, 1, 2,

√
3}

etc.

De�nition

Let p̄ ∈ R<ω and a ∈ HF(R). The p̄�dimension of a (dimp̄(a)) is

the cardinality of maximal algebraically independent subset of sp(a)
over the �eld R(p̄).
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Idea of the proof (2):

Assume L and 4 are de�nable by Σ�formulas with parameters p̄,
4 is a preordering on L and A ⊆ L has the property 〈A;4〉 ∼= ω1.

We can assume that all the elements of A has the same dimension

and this dimension n0 is the minimal possible.

Lemma

∀x ∈ A∃y ∈ L∃z ∈ A(x 4 y 4 z ∧ ¬(z 4 x) ∧ dimp̄(y) < n0).

(we can always make a step aside to get a smaller dimension!)
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Idea of the proof (3):

Ideas and facts used in the proof of Lemma:

If X ⊆ HF(R) is countable then D = {a | sp(a) ⊆ c`p̄(X )} is
countable. It follows that if S is an ω1�chain then there is a

b ∈ S such that there are no elements of D greater than b.

(Algebraic generalization principle) If ϕ is a Σ�formula, ā is

algebraically independent over p̄, and HF(R) |= ϕ(p̄, ā) then

ϕ(p̄, x̄) is true in some open neighborhood of ā.

If F , G , H are Σ�functions, F (p̄, ā) 4 G (p̄, b̄, c) 4 H(p̄, d̄),
and c is algebraically independent over p̄, ā, b̄, d̄ then for some

rational r ∈ Q it is true that F (p̄, ā) 4 G (p̄, b̄, r) 4 H(p̄, d̄).
Thus, G (p̄, b̄, r) becomes a smaller p̄�dimension.
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Idea of the proof (4):

De�ne elements xα, zα ∈ A, yα ∈ L, α < ω1 by induction.

xα: any element from A that strictly majorates {zγ | γ < α}.
Select yα ∈ L, zα ∈ A so that dimp̄(yα) < n0, ¬(zα 4 xα), and
xα 4 yα 4 zα:

dimp̄ = n0 (A)dimp̄ < n0

r xαH
HH

H
ryα ��
�
�r zα
r xα+1Q

Q
Q
ryα+1�
�
� zα+1r
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Idea of the proof (5):

Lemma

α < β < ω1 ⇔ yα ≺ yβ

It follows that α 7→ yα is an isomorphic embedding from ω1 into

〈L;4〉 such that all the p̄�dimensions of yα, α < ω are strictly less

than n0.

And it easily follows that n0 is not minimal possible!
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Presentability of ordinals
Presentability of ordinals without parameters
Presentability of G�odel constructive sets
Presentability of G�odel constructive sets without parameters
Nonpresentability of some degree structures
Presentability over C

Presentability of ordinals

Corollary

For any ordinal α the following conditions are equivalent:

1 α has a simple Σ�presentation over HF(R)

2 α has a Σ�presentation over HF(R)

3 α has a positive Σ�presentation over HF(R)

4 α < ω1.
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Presentability of G�odel constructive sets

L0 = ∅, Lα+1 = Def (Lα), Lγ =
⋃
α<γ Lα, for limit γ

Corollary

For any ordinal α the following conditions are equivalent:

1 〈Lα;∈〉 has a simple Σ�presentation over HF(R)
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Presentability of G�odel constructive sets without parameters

Theorem

For any ordinal α the following conditions are equivalent:

1 The structure 〈Lα;∈〉 has a simple Σ�presentation over

HF(R) without parameters

2 α 6 ω.

(Here we don't need the basic theorem)
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Corollary

Assume that 〈L;6〉 is an arbitrary partially ordered set in which for

any at most countable chain C ⊆ L there exists an x ∈ L \ C with

the property C 6 x .
Then 〈L;6〉 has no positive Σ�presentations over HF(R) with

parameters (it follows that it has no neither Σ�presentations nor

simple Σ�presentations with parameters).
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Nonpresentability of some degree structures

Theorem

The partially ordered sets of Turing, m�, 1�, and tt�degrees have

no positive Σ�presentations over HF(R) with parameters.

(It follows that they have no neither Σ�presentations nor simple

Σ�presentations with parameters).
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Presentability over C

Corollary

Let α be an ordinal. Then the following conditions are equivalent:

1 α has a simple Σ�presentation over HF(C)

2 α has a Σ�presentation over HF(C)

3 α has a positive Σ�presentation over HF(C)

4 α < ωCK
1
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Contents of the talk

Early studies

Non�embeddability of ω1 into Σ�de�nable preorderings over

HF(R) (basic result)

Descriptions of Σ�presentable ordinals (with parameters and

without them) over HF(R)

Description of Σ�presentable G�odel constructive sets (with

parameters and without them) over HF(R)

Non�Σ�presentability of some degree structures (T�, m�, 1�,

tt�) over HF(R)

Description of Σ�presentable ordinals over HF(C)
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Thank you!
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