Higher Recursion in Computable Structure Theory.

Antonio Montalbán

University of California, Berkeley

Workshop on Higher Recursion Theory IMS – NUS – Singapore May 2019

Summary

- **1** Π^1_1 -ness and ordinals
- Output And A state of the st
- When hyperarithmetic is recursive
- Overspill
- **o** A structure equivalent to its own jump

1 Π^1_1 -ness and ordinals

- Output And A state of the st
- When hyperarithmetic is recursive
- Overspill
- **o** A structure equivalent to its own jump

0, 1, 2, ...,

 $0,1,2,...,\,\omega,$

 $0,1,2,...,\,\omega,\,\omega+1,$

 $0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...,$

 $0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega$

 $0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ..., \omega + \omega = \omega 2,$

 $0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,$

 $0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,$

 $0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,$

0, 1, 2, ..., ω , ω + 1, ω + 2, ..., ω + ω = ω 2, ω 2 + 1, ω 2 + 2 ..., ω 3, ..., ω 4, ...,

0, 1, 2, ..., ω , ω + 1, ω + 2, ..., ω + ω = ω 2, ω 2 + 1, ω 2 + 2 ..., ω 3, ..., ω 4, ..., $\omega \cdot \omega$ =

0, 1, 2, ..., ω , ω + 1, ω + 2, ..., ω + ω = ω 2, ω 2 + 1, ω 2 + 2 ..., ω 3, ..., ω 4, ..., $\omega \cdot \omega = \omega^2$,

0, 1, 2, ..., ω , ω + 1, ω + 2, ..., ω + ω = ω 2, ω 2 + 1, ω 2 + 2 ..., ω 3, ..., ω 4, ..., $\omega \cdot \omega = \omega^2$,... ω^3

0, 1, 2, ..., ω , $\omega + 1$, $\omega + 2$, ..., $\omega + \omega = \omega 2$, $\omega 2 + 1$, $\omega 2 + 2$..., $\omega 3$, ..., $\omega 4$, ..., $\omega \cdot \omega = \omega^2$, ..., ω^3 , ..., ω^4 , ...

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega}, \end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,.\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,..\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,...\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,...\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,.....\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\ldots,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\ldots\,\,\omega^3,...,\,\omega^4,\ldots\,\,\omega^\omega,\ldots\,\,\omega^{\omega^\omega},\,\ldots\ldots\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\ldots,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\ldots\,\,\omega^3,...,\,\omega^4,\ldots\,\,\omega^\omega,\ldots\,\,\omega^{\omega^\omega},\,\ldots\ldots\ldots\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,....\,\,\omega^{\omega^\omega},\,..\,\,\omega^{\omega^\omega},\,..\,\,\omega^$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,....\,\,\omega^{\omega^\omega},\,..\,\,\omega^{\omega^\omega},\,..\,\,\omega^\omega$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element.

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,....\,\,\omega^{\omega^\omega},\,..\,\,\omega^{\omega^\omega},\,..\,\,\omega$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,....\,\,\omega^{\omega^\omega},\,..\,\,\omega^{\omega^\omega},\,..\,\,\omega^$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

- A is isomorphic to an initial segment of B
- B is isomorphic to an initial segment of A

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,...\,\,\omega^3,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},\,....\,\,\omega^{\omega^\omega},\,..\,\,\omega^{\omega^\omega},\,..\,\,\omega^$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

- A is isomorphic to an initial segment of B
- B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

$\Pi^1_1\text{-ness}$ and Well-Orders

Π_1^1 -ness and Well-Orders

Definition

A Π_1^1 formula is one of the form $\forall f \in \mathbb{N}^{\mathbb{N}} \varphi(f)$, where φ is arithmetic.

Π_1^1 -ness and Well-Orders

Definition

A Π_1^1 formula is one of the form $\forall f \in \mathbb{N}^{\mathbb{N}} \varphi(f)$, where φ is arithmetic.

Theorem: Consider $S \subseteq \mathbb{N}$. $S \text{ is } \Pi^1_1 \iff$ there is a computable list of linear orders \mathcal{L}_e such that $e \in S \leftrightarrow \mathcal{L}_e$ is well-ordered.

Π_1^1 -ness and Well-Orders

Definition

A Π^1_1 formula is one of the form $\forall f \in \mathbb{N}^{\mathbb{N}} \varphi(f)$, where φ is arithmetic.

Theorem: Consider $S \subseteq \mathbb{N}$. $S \text{ is } \Pi^1_1 \iff$ there is a computable list of linear orders \mathcal{L}_e such that $e \in S \leftrightarrow \mathcal{L}_e$ is well-ordered.

The key notion connecting Π_1^1 -ness and well-orders

is well-founded trees.

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded if it has no infinite paths.

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

$$\mathsf{rk}(T) = \sup_{n \in \mathbb{N}} (\mathsf{rk}(T_n) + 1),$$

where $T_n = \{ \sigma \in \mathbb{N}^{<\omega} : n^{\frown} \sigma \in T \}.$

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

$$\mathsf{rk}(T) = \sup_{n \in \mathbb{N}} (\mathsf{rk}(T_n) + 1),$$

where $T_n = \{ \sigma \in \mathbb{N}^{<\omega} : n^{\frown} \sigma \in T \}.$

If T is ill-founded, let $rk(T) = \infty$.

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

$$\mathsf{rk}(T) = \sup_{n \in \mathbb{N}} (\mathsf{rk}(T_n) + 1),$$

where $T_n = \{ \sigma \in \mathbb{N}^{<\omega} : n^{\frown} \sigma \in T \}.$

If T is ill-founded, let $rk(T) = \infty$.

The rank function is NOT a computable function.

Lemma: Given trees S and T, $\mathsf{rk}(S) \leq \mathsf{rk}(T) \iff$ there is an \subsetneq -preserving embedding $S \to T$.

Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the *tree of descending sequences*:

$$T_{\mathcal{L}} = \{ \langle \ell_0, ..., \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$

Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the *tree of descending sequences*:

$$T_{\mathcal{L}} = \{ \langle \ell_0, ..., \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$

Obs: \mathcal{L} is well-ordered $\iff T_{\mathcal{L}}$ is well-founded.

Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the *tree of descending sequences*:

$$T_{\mathcal{L}} = \{ \langle \ell_0, ..., \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$

Obs: \mathcal{L} is well-ordered $\iff T_{\mathcal{L}}$ is well-founded.

Furthermore, if \mathcal{L} is well-ordered, $\mathsf{rk}(\mathcal{T}_{\mathcal{L}}) \cong \mathcal{L}$.

Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the *tree of descending sequences*:

$$T_{\mathcal{L}} = \{ \langle \ell_0, ..., \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$

Obs: \mathcal{L} is well-ordered $\iff T_{\mathcal{L}}$ is well-founded.

Furthermore, if \mathcal{L} is well-ordered, $\mathsf{rk}(\mathcal{T}_{\mathcal{L}}) \cong \mathcal{L}$.

Corollary: Deciding if a liner ordering is WO, is as hard as deciding if a tree is WF.

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{\mathsf{KB}} \tau \quad \iff \quad \sigma \supseteq \tau \quad \lor \quad \exists i \ (\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i)).$$

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{\mathsf{KB}} \tau \quad \iff \quad \sigma \supseteq \tau \quad \lor \quad \exists i \ (\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i)).$$

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{\mathcal{KB}})$ is well-ordered.

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{\mathsf{KB}} \tau \quad \iff \quad \sigma \supseteq \tau \quad \lor \quad \exists i \ (\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i)).$$

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{\mathcal{KB}})$ is well-ordered.

Lemma: $\operatorname{rk}(T) + 1 \leq (T; \leq_{KB}) \leq \omega^{\operatorname{rk}(T)} + 1$.

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{\mathsf{KB}} \tau \quad \iff \quad \sigma \supseteq \tau \quad \lor \quad \exists i \ \big(\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i)\big).$$

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{\mathcal{KB}})$ is well-ordered.

Lemma: $\mathsf{rk}(T) + 1 \leq (T; \leq_{\mathcal{KB}}) \leq \omega^{\mathsf{rk}(T)} + 1.$

Corollary: Deciding if a a tree is WF, is as hard as deciding if liner ordering is WO.

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Proof:

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

```
Kleene's \mathcal{O} is \Pi^1_1-complete.
```

Proof:

• Every Σ_1^1 formula $\varphi(n)$ is equivalent to $\exists f \in \mathbb{N}^{\mathbb{N}} \ \theta(f, n)$ where θ is Π_1^0 .

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Proof:

- Every Σ₁¹ formula φ(n) is equivalent to ∃f ∈ ℕ^ℕ θ(f, n) where θ is Π₁⁰.
- For a Π_1^0 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Proof:

- Every Σ_1^1 formula $\varphi(n)$ is equivalent to $\exists f \in \mathbb{N}^{\mathbb{N}} \ \theta(f, n)$ where θ is Π_1^0 .
- For a Π_1^0 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π_1^0 formula $\theta(f, n)$, there is computable sequence of trees T_n such that
 - $\theta(f,n) \iff f \in [T_n].$

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Proof:

- Every Σ_1^1 formula $\varphi(n)$ is equivalent to $\exists f \in \mathbb{N}^{\mathbb{N}} \ \theta(f, n)$ where θ is Π_1^0 .
- For a Π_1^0 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π_1^0 formula $\theta(f, n)$, there is computable sequence of trees T_n such that

 $\theta(f, n) \iff f \in [T_n].$

• If $S \subseteq \mathbb{N}$ is Π_1^1 and definable by $\neg \varphi(n)$, then $n \in S \iff T_n$ has no paths

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Proof:

- For a Π_1^0 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π_1^0 formula $\theta(f, n)$, there is computable sequence of trees T_n such that

 $\theta(f,n) \iff f \in [T_n].$

• If $S \subseteq \mathbb{N}$ is Π_1^1 and definable by $\neg \varphi(n)$, then $n \in S \iff T_n$ has no paths $\iff (T_n; \leq_{KB})$ is well-ordered \iff

Definition

Kleene's \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene's \mathcal{O} is Π^1_1 -complete.

Proof:

- Every Σ_1^1 formula $\varphi(n)$ is equivalent to $\exists f \in \mathbb{N}^{\mathbb{N}} \ \theta(f, n)$ where θ is Π_1^0 .
- For a Π_1^0 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π_1^0 formula $\theta(f, n)$, there is computable sequence of trees T_n such that
 - $\theta(f, n) \iff f \in [T_n].$
- If $S \subseteq \mathbb{N}$ is Π_1^1 and definable by $\neg \varphi(n)$, then $n \in S \iff T_n$ has no paths $\iff (T_n; \leq_{KB})$ is well-ordered $\iff \operatorname{index}(T_n; \leq_{KB}) \in \mathcal{O}.$

An ordinal α is *computable* if

there is a computable $\leq_{\mathcal{A}} \subseteq \omega^2$ with $\alpha \cong (\omega; \leq_{\mathcal{A}})$.

An ordinal α is *computable* if there is a computable $\leq_{\mathcal{A}} \subseteq \omega^2$ with $\alpha \cong (\omega; \leq_{\mathcal{A}})$.

Obs: The computable ordinals are closed downwards.

An ordinal α is *computable* if there is a computable $\leq_{\mathcal{A}} \subseteq \omega^2$ with $\alpha \cong (\omega; \leq_{\mathcal{A}})$.

Obs: The computable ordinals are closed downwards.

Definition: Let ω_1^{CK} be the least non-computable ordinal.

An ordinal α is *computable* if there is a computable $\leq_{\mathcal{A}} \subseteq \omega^2$ with $\alpha \cong (\omega; \leq_{\mathcal{A}})$.

Obs: The computable ordinals are closed downwards.

Definition: Let ω_1^{CK} be the least non-computable ordinal.

Obs: Kleene's \mathcal{O} can compute a copy of ω_1^{CK} :

Omega-one-Church-Kleene

An ordinal α is *computable* if there is a computable $\leq_{\mathcal{A}} \subseteq \omega^2$ with $\alpha \cong (\omega; \leq_{\mathcal{A}})$.

Obs: The computable ordinals are closed downwards.

Definition: Let ω_1^{CK} be the least non-computable ordinal.

Obs: Kleene's \mathcal{O} can compute a copy of ω_1^{CK} :

$$\omega_1^{CK} \cong \sum_{e \in \mathcal{O}} \mathcal{L}_e$$

where \mathcal{L}_e is the linear ordering with index e.

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

• Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$

Theorem: Let $\mathfrak{A} \subset 2^{\mathbb{N}}$ be a Σ_1^1 set of well-orderings of \mathbb{N} . There is an ordinal $\alpha < \omega_1^{\mathcal{CK}}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathfrak{A}$.

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$

Theorem: Let $\mathfrak{A} \subset 2^{\mathbb{N}}$ be a Σ_1^1 set of well-orderings of \mathbb{N} . There is an ordinal $\alpha < \omega_1^{CK}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathfrak{A}$.

Proof:

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$

Theorem: Let $\mathfrak{A} \subset 2^{\mathbb{N}}$ be a Σ_1^1 set of well-orderings of \mathbb{N} . There is an ordinal $\alpha < \omega_1^{\mathcal{CK}}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathfrak{A}$.

Proof: Let $A = \{e \in \mathbb{N} : (\exists \mathcal{L} \in \mathfrak{A}) \ \mathcal{L}_e \preccurlyeq \mathcal{L}\}.$

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$

Theorem: Let $\mathfrak{A} \subset 2^{\mathbb{N}}$ be a Σ_1^1 set of well-orderings of \mathbb{N} . There is an ordinal $\alpha < \omega_1^{CK}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathfrak{A}$.

Proof: Let $A = \{e \in \mathbb{N} : (\exists \mathcal{L} \in \mathfrak{A}) \ \mathcal{L}_e \preccurlyeq \mathcal{L}\}.$ *A* is Σ_1^1 and $A \subseteq \mathcal{O}$.

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$

Theorem: Let $\mathfrak{A} \subset 2^{\mathbb{N}}$ be a Σ_1^1 set of well-orderings of \mathbb{N} . There is an ordinal $\alpha < \omega_1^{\mathcal{CK}}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathfrak{A}$.

Proof: Let $A = \{e \in \mathbb{N} : (\exists \mathcal{L} \in \mathfrak{A}) \ \mathcal{L}_e \preccurlyeq \mathcal{L}\}.$ *A* is Σ_1^1 and $A \subseteq \mathcal{O}$. Let $\alpha < \omega_1^{CK}$ be a bound for *A*.

Theorem: Let $A \subset \mathcal{O}$ be Σ_1^1 . There is an ordinal $\alpha < \omega_1^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:

- Define *-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
- Let $\{S_n\}_{n\in\mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \operatorname{rk}(S_n) = \infty$.

• Define
$$\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} * S_n; \leq_{KB}).$$

Theorem: Let $\mathfrak{A} \subset 2^{\mathbb{N}}$ be a Σ_1^1 set of well-orderings of \mathbb{N} . There is an ordinal $\alpha < \omega_1^{\mathcal{CK}}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathfrak{A}$.

Proof: Let $A = \{e \in \mathbb{N} : (\exists \mathcal{L} \in \mathfrak{A}) \ \mathcal{L}_e \preccurlyeq \mathcal{L}\}.$ $A \text{ is } \Sigma_1^1 \text{ and } A \subseteq \mathcal{O}.$ Let $\alpha < \omega_1^{CK}$ be a bound for A. Then α is a bound for \mathfrak{A} too.

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Obsevation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 .

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem:
$$A \subseteq \omega$$
 is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem:
$$A \subseteq \omega$$
 is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=)

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem: $A \subseteq \omega$ is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=) Both Π^1_1 sets and Σ^1_1 sets are closed downward under \leq_m .

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem: $A \subseteq \omega$ is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=) Both Π^1_1 sets and Σ^1_1 sets are closed downward under \leq_m . (=>)

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem:
$$A \subseteq \omega$$
 is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=) Both Π_1^1 sets and Σ_1^1 sets are closed downward under \leq_m . (=>) Let $f: A \leq_m O$.

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem:
$$A \subseteq \omega$$
 is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=) Both Π_1^1 sets and Σ_1^1 sets are closed downward under \leq_m . (=>) Let $f: A \leq_m \mathcal{O}$. Since A is Σ_1^1 , so is $f[A] \subseteq \mathcal{O}$.

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 .

 Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem:
$$A \subseteq \omega$$
 is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=) Both Π_1^1 sets and Σ_1^1 sets are closed downward under \leq_m . (=>) Let $f: A \leq_m \mathcal{O}$. Since A is Σ_1^1 , so is $f[A] \subseteq \mathcal{O}$. Let $\alpha < \omega_1^{CK}$ be a bound for f[A].

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1 .

For $\alpha < \omega_1^{CK}$, let $\mathcal{O}_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $\mathcal{O}_{(\leq \alpha)}$ is Δ_1^1 . Σ_1^1 -bounding: If $A \subseteq \mathcal{O}$ is Σ_1^1 , then $A \subseteq \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem:
$$A \subseteq \omega$$
 is $\Delta_1^1 \iff A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (<=) Both Π_1^1 sets and Σ_1^1 sets are closed downward under \leq_m . (=>) Let $f: A \leq_m \mathcal{O}$. Since A is Σ_1^1 , so is $f[A] \subseteq \mathcal{O}$. Let $\alpha < \omega_1^{CK}$ be a bound for f[A]. Then $f: A \leq_m \mathcal{O}_{(<\alpha)}$.

Finding paths through trees

Observation: $\ensuremath{\mathcal{O}}$ can compute paths through any computable tree.

Finding paths through trees

Observation: \mathcal{O} can compute paths through any computable tree.

Lemma: Every non-empty Σ_1^1 class of reals has a member $\leq_T \mathcal{O}$.

Finding paths through trees

Observation: \mathcal{O} can compute paths through any computable tree.

Lemma: Every non-empty Σ_1^1 class of reals has a member $\leq_T \mathcal{O}$.

Theorem (Spector-Gandy) Every non-empty Σ_1^1 class of reals has a member $\leq_T \mathcal{O}$ and low for ω_1

..., where a real X is low for ω_1 if $\omega_1^X = \omega_1^{CK}$.

Part II

- **1** Π^1_1 -ness and ordinals
- Output A state of the state
- When hyperarithmetic is recursive
- Overspill
- **o** A structure equivalent to its own jump

Vocabulary of arithmetic: 0, 1, +, \times , \leq .

Vocabulary of arithmetic: 0, 1, +, \times , \leq .

Definition: A set $A \subseteq \mathbb{N}$ is *arithmetic* if it is definable in \mathbb{N} by a first-order formula of arithmetic.

$$A = \{n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n)\}.$$

Vocabulary of arithmetic: 0, 1, +, \times , \leq .

Definition: A set $A \subseteq \mathbb{N}$ is *arithmetic* if it is definable in \mathbb{N} by a first-order formula of arithmetic.

$$A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n) \}.$$

The following are equivalent:

- A is arithmetic
- A is computable in $0^{(n)}$ for some n,

Vocabulary of arithmetic: 0, 1, +, \times , \leq .

Definition: A set $A \subseteq \mathbb{N}$ is *arithmetic* if it is definable in \mathbb{N} by a first-order formula of arithmetic.

$$A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n) \}.$$

The following are equivalent:

- A is arithmetic
- A is computable in $0^{(n)}$ for some n,
- A is $\leq_m \mathcal{O}_{(\leq \omega^n)}$ for some n

Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

In a group $\mathcal{G} = (G; e, *)$:

Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $torsion(x) \equiv$

In a group $\mathcal{G} = (G; e, *)$:

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$ In a group $\mathcal{G} = (G; e, *)$:

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$ In a group $\mathcal{G} = (G; e, *)$: $divisible(x) \equiv$

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{y * y * \cdots * y} = x),$$

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{y * y * \cdots * y} = x),$$

Theorem: [Scott 65] For every countable structure \mathcal{A} , there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures \mathcal{C} , $\mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

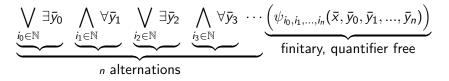
Theorem: [Scott 65] For every countable structure \mathcal{A} , there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures \mathcal{C} , $\mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{\bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b})\}.$

We count alternations of \exists and \bigvee versus \forall and \bigwedge .

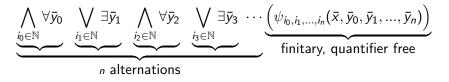
We count alternations of \exists and \bigvee versus \forall and \bigwedge .

A $\sum_{n=1}^{n}$ formula is one of the form:



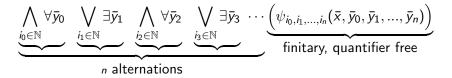
We count alternations of \exists and \bigvee versus \forall and \bigwedge .

A $\prod_{n=1}^{n}$ formula is one of the form:



We count alternations of \exists and \bigvee versus \forall and \bigwedge .

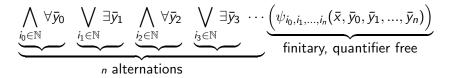
A $\prod_{n=1}^{n}$ formula is one of the form:



A
$$\sum_{\alpha}^{in}$$
 formula is one of the form: $\bigvee_{i \in \mathbb{N}} \exists \overline{y} \quad \underbrace{\left(\psi_i(\overline{x}, \overline{y})\right)}_{\prod_{\beta}^{in} \text{ for } \beta < \alpha}$

We count alternations of \exists and \bigvee versus \forall and \bigwedge .

A $\prod_{n=1}^{n}$ formula is one of the form:



A
$$\prod_{\beta}^{\texttt{in}}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{\texttt{in}} \text{ for } \gamma < \beta}$

18 / 50

Definition: An infinitary formula is *computable* if

18 / 50

Definition: An infinitary formula is *computable*

if it has a computable tree representation.

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if

18 / 50

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example:

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \in \mathbb{N}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \in \mathbb{N}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y(y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

We use $\mathcal{L}_{c,\omega}$ to denote the set of computably infinitary formulas.

more examples

Example: There is a $\Pi_{2\alpha+1}^{c}$ formula ψ_{α} such that, on a partial ordering \mathcal{P} ,

$$\mathcal{P} \models \psi_{\alpha}(a) \quad \iff \quad \mathsf{rk}_{\mathcal{P}}(a) \leq \alpha.$$

more examples

Example: There is a $\Pi_{2\alpha+1}^{c}$ formula ψ_{α} such that, on a partial ordering \mathcal{P} ,

$$\mathcal{P} \models \psi_{\alpha}(a) \quad \Longleftrightarrow \quad \mathsf{rk}_{\mathcal{P}}(a) \leq \alpha.$$

The formula is built by transfinite recursion:

$$\psi_{lpha}(x) \;\; \equiv \;\; orall y < x igwedge_{\gamma < eta} \psi_{\gamma}(y).$$

Example: There is a $\Pi_{2\alpha+1}^{c}$ formula ψ_{α} such that, on a partial ordering \mathcal{P} ,

$$\mathcal{P} \models \psi_{\alpha}(a) \quad \Longleftrightarrow \quad \mathsf{rk}_{\mathcal{P}}(a) \leq \alpha.$$

The formula is built by transfinite recursion:

$$\psi_lpha({\sf x}) \;\; \equiv \;\; orall {\sf y} < {\sf x} igwedge_{\gamma < eta} \psi_\gamma({\sf y}).$$

Example: There is a $\Sigma_{2\alpha+1}^{c}$ sentence $\varphi_{\omega^{\alpha}}$ such that, for a linear ordering \mathcal{L} ,

$$\mathcal{L} \models \varphi_{\omega^{\alpha}} \quad \iff \quad \mathcal{L} \le \omega^{\alpha}.$$

Hyperarithmetic sets

Definition: A set $A \subseteq \mathbb{N}$ is *hyperarithmetic* if it is definable by an infinitary computable formula $\varphi(x)$.

 $A = \{n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n)\}.$

Hyperarithmetic sets

Definition: A set $A \subseteq \mathbb{N}$ is *hyperarithmetic* if it is definable by an infinitary computable formula $\varphi(x)$.

$$\mathsf{A} = \{\mathsf{n} \in \mathbb{N} : (\mathbb{N}; \mathsf{0}, \mathsf{1}, +, \times, \leq) \models \varphi(\mathsf{n})\}.$$

Theorem: Let $A \subseteq \mathbb{N}$. The following are equivalent:

- A is definable by a $\mathcal{L}_{c,\omega}$ formula
- There is a computable list $\{\varphi_n : n \in \mathbb{N}\}$ of $\mathcal{L}_{c,\omega}$ sentences

over the empty vocabulary $\{\top, \bot\}$

such that
$$A = \{n \in \mathbb{N} : \models \varphi_n\}.$$

Observation Deciding if " $\mathcal{M} \models \varphi$ " for φ infinitary is Σ_1^1 :

Observation Deciding if " $\mathcal{M} \models \varphi$ " for φ infinitary is Σ_1^1 : There is a valid truth-assignment to the sub-formulas making φ true.

Observation Deciding if " $\mathcal{M} \models \varphi$ " for φ infinitary is Σ_1^1 : There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ_1^1 .

Observation Deciding if " $\mathcal{M} \models \varphi$ " for φ infinitary is Σ_1^1 : There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ_1^1 .

Given a computable list $\{\mathcal{M}_e : e \in \mathbb{N}\}\$ and a $\mathcal{L}_{c,\omega}$ -sentence φ , $\{n : \mathcal{M}_n \models \varphi\}\$ is hyperarithmetic.

Observation Deciding if " $\mathcal{M} \models \varphi$ " for φ infinitary is Σ_1^1 : There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ_1^1 .

Given a computable list $\{\mathcal{M}_e : e \in \mathbb{N}\}\$ and a $\mathcal{L}_{c,\omega}$ -sentence φ , $\{n : \mathcal{M}_n \models \varphi\}\$ is hyperarithmetic.

Corollary: $\mathcal{O}_{(\leq \alpha)}$ is hyperarithmetic.

Observation Deciding if " $\mathcal{M} \models \varphi$ " for φ infinitary is Σ_1^1 : There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ_1^1 .

Given a computable list $\{\mathcal{M}_e : e \in \mathbb{N}\}\$ and a $\mathcal{L}_{c,\omega}$ -sentence φ , $\{n : \mathcal{M}_n \models \varphi\}\$ is hyperarithmetic.

Corollary: $\mathcal{O}_{(\leq \alpha)}$ is hyperarithmetic.

Theorem: [Kleene] Let $A \subseteq \omega$. The following are equivalent:

- A is hyperarithmetic
- A is Δ¹₁.

•
$$A \leq_m \mathcal{O}_{(\leq \alpha)}$$
 for some $\alpha < \omega_1^{CK}$

Transfinite iterations of the Turing jump

22 / 50

Let \mathcal{L} be a well-ordering with domain $\subseteq \mathbb{N}$.

Definition: A *jump hierarchy* on \mathcal{L} is a set $H \subseteq \mathcal{L} \times \mathbb{N}$ such that

$$H^{[\ell]} = (H^{[<\ell]})',$$

where $X^{[\ell]} = \{x : (\ell, x) \in X\}$ and $X^{[<\ell]} = \{(k, x) : k <_{\mathcal{L}} \ell \& (k, x) \in X\}.$

Let \mathcal{L} be a well-ordering with domain $\subseteq \mathbb{N}$.

Definition: A *jump hierarchy* on \mathcal{L} is a set $H \subseteq \mathcal{L} \times \mathbb{N}$ such that

$$H^{[\ell]} = (H^{[<\ell]})',$$

where $X^{[\ell]} = \{x : (\ell, x) \in X\}$ and $X^{[<\ell]} = \{(k, x) : k <_{\mathcal{L}} \ell \& (k, x) \in X\}.$

Obs: For every well-ordering \mathcal{L} there is a unique jump hierarchy on it.

Pf: Show that there is an isomorphism $\alpha \to \beta$ computable in both H_{α} and H_{β} .

23 / 50

Pf: Show that there is an isomorphism $\alpha \to \beta$ computable in both H_{α} and H_{β} .

We now can define the Turing degree $0^{(\alpha)}$ for computable $\alpha < \omega_1^{CK}$.

Pf: Show that there is an isomorphism $\alpha \to \beta$ computable in both H_{α} and H_{β} .

We now can define the Turing degree $0^{(\alpha)}$ for computable $\alpha < \omega_1^{CK}$.

Theorem: For
$$n \in \mathbb{N}$$
: $\mathcal{O}_{(<\omega^n)} \equiv_T 0^{(2n)}$.

Pf: Show that there is an isomorphism $\alpha \to \beta$ computable in both H_{α} and H_{β} .

We now can define the Turing degree $0^{(\alpha)}$ for computable $\alpha < \omega_1^{CK}$.

Theorem: For
$$n \in \mathbb{N}$$
: $\mathcal{O}_{(<\omega^n)} \equiv_{\mathcal{T}} 0^{(2n)}$.
For $\alpha \in \omega_1^{CK} \smallsetminus \mathbb{N}$: $\mathcal{O}_{(<\omega^\alpha)} \equiv_{\mathcal{T}} 0^{(2\alpha+1)}$.

Part III

- **1** Π^1_1 -ness and ordinals
- Output And A state of the st
- When hyperarithmetic is recursive
- Overspill
- **o** A structure equivalent to its own jump

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof:

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preccurlyeq \mathcal{A}\}.$

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preccurlyeq \mathcal{A}\}$. *E* is Σ_1^1

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preccurlyeq \mathcal{A}\}$. *E* is Σ_1^1 and $E \subseteq \mathcal{O}$.

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preccurlyeq \mathcal{A}\}$. *E* is Σ_1^1 and $E \subseteq \mathcal{O}$. Then there is a bound $\alpha < \omega_1^{CK}$ for *E*.

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preccurlyeq \mathcal{A}\}$. E is Σ_1^1 and $E \subseteq \mathcal{O}$. Then there is a bound $\alpha < \omega_1^{CK}$ for E. Then $\mathcal{A} \le \alpha$.

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω , then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preccurlyeq \mathcal{A}\}$. E is Σ_1^1 and $E \subseteq \mathcal{O}$. Then there is a bound $\alpha < \omega_1^{CK}$ for E. Then $\mathcal{A} \le \alpha$.

Theorem: If an infinitary formula has a hyperarithmetic representation it is equivalent to a computable infinitary formula

Theorem ([M. 05])

Every hyperarithmetic linear ordering

is bi-embeddable with a computable one.

Theorem ([M. 05]) Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector's theorem:

Theorem ([M. 05]) Every hyperarithmetic linear ordering

is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector's theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

Theorem ([M. 05]) Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector's theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability.

Theorem ([M. 05]) Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector's theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability. We produce bi-embeddability invariants for linear orderings given by finite trees with ordinal labels.

Theorem ([M. 05]) Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector's theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability. We produce bi-embeddability invariants for linear orderings given by finite trees with ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group

is bi-embeddable with a computable one.

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.

The proof uses UIm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71].

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group

is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups.

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group

is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups.

Hyperarithmetic groups have UIm rank $\leq \omega_1^{CK}$.

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group

is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups.

Hyperarithmetic groups have UIm rank $\leq \omega_1^{CK}$. If the UIm rank is $< \omega_1^{CK}$ use the computable operator.

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group

is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups.

Hyperarithmetic groups have UIm rank $\leq \omega_1^{CK}$. If the UIm rank is $< \omega_1^{CK}$ use the computable operator. If the UIm rank is ω_1^{CK} , we need to show their divisible part must be isomorphic to \mathbb{Q}^{∞} , and hence they are bi-embeddable with \mathbb{Q}^{∞} .

Vaught's conjecture:

Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Vaught's conjecture:

Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught's conjecture* if

Vaught's conjecture:

Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught's conjecture* if it has uncountably but not perfectly many countable models.

Vaught's conjecture:

Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught's conjecture* if it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an $L_{\omega_1,\omega}$ sentence with uncountably many models. TFAE

- T is a counterexample to Vaught's conjecture.
- Relative to every oracle on a cone, every hyperarithmetic model of T is isomorphic to a computable one,

Vaught's conjecture:

Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught's conjecture* if it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an $L_{\omega_1,\omega}$ sentence with uncountably many models. TFAE

- T is a counterexample to Vaught's conjecture.
- Relative to every oracle on a cone, every hyperarithmetic model of T is isomorphic to a computable one,

By "relative to every oracle on a cone"

we mean " $(\exists Y \in 2^{\omega})(\forall X \geq_T Y)$ the following holds relativized to Y."

Definition

An equivalence class E on 2^{ω} satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is *E*-equivalent to a computable one.

Definition

An equivalence class E on 2^{ω} satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture

when relativized;

Definition

An equivalence class E on 2^{ω} satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture

when relativized;

•
$$X \equiv Y \iff \omega_1^X = \omega_1^Y.$$

Definition

An equivalence class E on 2^{ω} satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture

when relativized;

• $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Obs: All the equivalence relations above are Σ_1^1 .

Definition

An equivalence class E on 2^{ω} satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture

when relativized;

• $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Obs: All the equivalence relations above are Σ_1^1 .

If we let the reals not in the class be equivalent, they are Σ_1^1 -equivalence relations on 2^{ω} .

Definition

An equivalence class E on 2^{ω} satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture

when relativized;

• $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Obs: All the equivalence relations above are Σ_1^1 . If we let the reals not in the class be equivalent, they are Σ_1^1 -equivalence relations on 2^{ω} .

Def: E satisfies hyperarithmetic-is-recursive trivially

if every real is *E*-equivalent to a computable one.

The question

Question: What makes an equivalence relation

satisfy hyperarithmetic-is-recursive?

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:

Question: What makes an equivalence relation

satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples: If *E* is Σ_1^1 and we define $X \not F Y \iff (X \not E Y) \lor (\omega_1^X = \omega_1^Y = \omega_1^{CK})$, then the transitive closure of *F* is Σ_1^1 and satisfies hyperarithmetic-is-recursive. Question: What makes an equivalence relation

satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples: If *E* is Σ_1^1 and we define $X \not F Y \iff (X \not E Y) \lor (\omega_1^X = \omega_1^Y = \omega_1^{CK})$, then the transitive closure of *F* is Σ_1^1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive on a cone?

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm: [Martin] (0^{\sharp} exists) Every Σ_1^1 degree-invariant $A \subseteq 2^{\mathbb{N}}$ either contains or is disjoint from a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm: [Martin] (0^{\sharp} exists) Every Σ_1^1 degree-invariant $A \subseteq 2^{\mathbb{N}}$ either contains or is disjoint from a cone.

Def: A degree-invariant $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if it contains a cone, and Martin measure 0 if it doesn't.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm: [Martin] (0^{\sharp} exists) Every Σ_1^1 degree-invariant $A \subseteq 2^{\mathbb{N}}$ either contains or is disjoint from a cone.

Def: A degree-invariant $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if it contains a cone, and Martin measure 0 if it doesn't.

Def: *E* satisfies *hyperarithmetic-is-recursive on a cone* if, $(\exists Y)(\forall X \ge_T Y)$, every *X*-hyperarithmetic real is *E*-equivalent to an *X*-computable one.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm: [Martin] (0^{\sharp} exists) Every Σ_1^1 degree-invariant $A \subseteq 2^{\mathbb{N}}$ either contains or is disjoint from a cone.

Def: A degree-invariant $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if it contains a cone, and Martin measure 0 if it doesn't.

Def: *E* satisfies *hyperarithmetic-is-recursive on a cone* if, $(\exists Y)(\forall X \ge_T Y)$, every *X*-hyperarithmetic real is *E*-equivalent to an *X*-computable one.

Obs: Since in computability theory most proofs relativize: For "natural" E, E satisfies hyperarithmetic-is-recursive \iff it does on a cone.

A sufficient condition: a first attempt

A sufficient condition: a first attempt

A sufficient condition for hyp-is-rec.

Def: For $\mathfrak{K} \subseteq 2^{\omega}$, $(\mathfrak{K}, \equiv, r)$ is a ranked equivalence relation if \equiv is an equivalence relation on \mathfrak{K} , and $r: \mathfrak{K}/\equiv \to \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *scattered* if $r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *projective* if \mathfrak{K} and \equiv are projective and r has a projective presentation $2^{\omega} \rightarrow 2^{\omega}$.

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

such that $\forall Z \in \mathfrak{K}, \ r(Z) < \omega_1^Z$.

For every X on a cone, (i.e. $\exists Y \forall X \ge_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If $f: 2^{\omega} \to \omega_1$ is projective and $f(X) < \omega_1^X$, then f is constant on a cone.

Antonio I	Montalbán (U.C. Berkel	y) When hyperarithmetic is recursive	Sept. 2012 15 / 28	
Antonio Montalbán	(U.C. Berkeley)	Higher Recursion and computable structures	May 2019	32 / 50

The main theorem

Theorem ([M. 13] (ZFC + $(0^{\sharp} \text{ exists}) + \neg CH$) Let *E* be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

- Theorem ([M. 13] (ZFC + $(0^{\sharp} \text{ exists}) + \neg CH)$
- Let E be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE
 - **1** E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

- Theorem ([M. 13] (ZFC + $(0^{\sharp} \text{ exists}) + \neg CH)$
- Let E be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE
 - **()** E satisfies hyperarithmetic-is-recursive on a cone non-trivially.
 - **2** E has \aleph_1 many equivalence classes.

- Theorem ([M. 13] (ZFC + $(0^{\sharp} \text{ exists}) + \neg CH)$
- Let E be a Σ_1^1 -equivalence relation on 2^ω . TFAE
 - **()** E satisfies hyperarithmetic-is-recursive on a cone non-trivially.
 - **2** E has \aleph_1 many equivalence classes.

This theorem applies to all the examples mentioned before. Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

The \neg CH assumption.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Theorem ([M. 13] (ZFC + $(0^{\sharp} \text{ exists})$) Let E be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Theorem ([M. 13] (ZFC + $(0^{\sharp} \text{ exists})$)

Let E be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

1 *E* satisfies hyperarithmetic-is-recursive on a cone.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

```
Theorem ([M. 13] (ZFC + (0^{\sharp} \text{ exists}))
```

Let E be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

- E satisfies hyperarithmetic-is-recursive on a cone.
- 2 E does not have perfectly many equivalence classes.

The sharp assumption

Def: $S \subseteq 2^{\omega}$ is cofinal (in the Turing degrees) if $\forall Y \exists X \ge_T Y \ (X \in S)$.

Thm: [Martin](0^{\ddagger} exists). If S is degree invariant and cofinal, it contains a cone.

Thm: [Martin](0^{\sharp} exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF)) Let \mathcal{E} be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

Thm: [Martin](0^{\sharp} exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \mathcal{E} be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

Thm: [Martin](0^{\sharp} exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \mathcal{E} be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

- E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
- 2 E does not have perfectly many equivalence classes.

Thm: [Martin](0^{\sharp} exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \mathcal{E} be a Σ_1^1 -equivalence relation on 2^{ω} . TFAE

- E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
- 2 E does not have perfectly many equivalence classes.

Theorem ([M. 13])

The following are equivalent over ZF.

- Every Σ₁¹-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.
- \bigcirc 0^{\ddagger} exists.

Theorem ([M. 13])

The following are equivalent over ZF.

 Every Σ₁¹-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

 \bigcirc 0^{\ddagger} exists.

The key result in this proof is: Thm: [Sami 99] Let $S = \{Y \in 2^{\omega} : \exists Z \ (\forall W \leq_{hyp} Z \ (W \leq_T Y) \& \omega_1^Z = \omega_1^Y\}.$ If S contains a cone, then 0^{\sharp} exists.

Theorem ([M. 13])

The following are equivalent over ZF.

 Every Σ₁¹-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

 \bigcirc 0^{\ddagger} exists.

The key result in this proof is: Thm: [Sami 99] Let $S = \{Y \in 2^{\omega} : \exists Z \ (\forall W \leq_{hyp} Z \ (W \leq_T Y) \& \omega_1^Z = \omega_1^Y\}.$ If S contains a cone, then 0^{\sharp} exists.

The proof of our result uses the following equivalence: $X \equiv Y$ iff

- X and Y are code structures L_α(A) and L_β(B) with α = β and ω₁^A = ω₁^B,
- or neither X nor Y are presentations of the form L_α(A) for α ∈ ω₁, A ∈ 2^ω.

Theorem ([M. 13])

The following are equivalent over ZF.

 Every Σ₁¹-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

 \bigcirc 0^{\ddagger} exists.

The key result in this proof is: Thm: [Sami 99] Let $S = \{Y \in 2^{\omega} : \exists Z \ (\forall W \leq_{hyp} Z \ (W \leq_T Y) \& \omega_1^Z = \omega_1^Y\}.$ If S contains a cone, then 0^{\sharp} exists.

The proof of our result uses the following equivalence: $X \equiv Y$ iff

- X and Y are code structures L_α(A) and L_β(B) with α = β and ω₁^A = ω₁^B,
- or neither X nor Y are presentations of the form L_α(A) for α ∈ ω₁, A ∈ 2^ω.

It then uses Barwise compactness to put us in the hypothesis of Sami's theorem:

Part IV

- **1** Π^1_1 -ness and ordinals
- Output And A state of the st
- When hyperarithmetic is recursive
- Overspill
- **o** A structure equivalent to its own jump

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof:

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO.

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. J is Σ_1^1

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. J is Σ_1^1 and $J \subseteq \mathcal{O}$.

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$ But $\mathcal{O} \text{ not } \Sigma_1^1$,

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$ But $\mathcal{O} \text{ not } \Sigma_1^1$, so $J \subsetneq \mathcal{O}$. Any \mathcal{L}_e for $e \in J \setminus \mathcal{O}$ is as wanted

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$ But $\mathcal{O} \text{ not } \Sigma_1^1$, so $J \subsetneq \mathcal{O}$. Any \mathcal{L}_e for $e \in J \smallsetminus \mathcal{O}$ is as wanted

Theorem: [Spector 59][Gandy 60] For $A \subseteq \mathbb{N}$, TFAE:

- A is definable by formula of the form: $\forall X (...arithmetic...)$
- A is definable by formula of the form: \exists hyp X (...arithmetic..)

Proof:

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$ But $\mathcal{O} \text{ not } \Sigma_1^1$, so $J \subsetneq \mathcal{O}$. Any \mathcal{L}_e for $e \in J \smallsetminus \mathcal{O}$ is as wanted

Theorem: [Spector 59][Gandy 60] For $A \subseteq \mathbb{N}$, TFAE:

- A is definable by formula of the form: $\forall X (...arithmetic...)$
- A is definable by formula of the form: \exists hyp X (...arithmetic..)

Proof:

(=>) Use that \mathcal{L}_e is well-founded \iff there is a hyp jump hierarchy on it.

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let $J = \{e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e\}$ where \mathcal{L}_e is eth comp. LO. $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$ But $\mathcal{O} \text{ not } \Sigma_1^1$, so $J \subsetneq \mathcal{O}$. Any \mathcal{L}_e for $e \in J \smallsetminus \mathcal{O}$ is as wanted

Theorem: [Spector 59][Gandy 60] For $A \subseteq \mathbb{N}$, TFAE:

- A is definable by formula of the form: $\forall X (...arithmetic...)$
- A is definable by formula of the form: \exists hyp X (...arithmetic..)

Proof:

(=>) Use that \mathcal{L}_e is well-founded \iff there is a hyp jump hierarchy on it. (<=) Use that the set of indices for hyp reals is Π_1^1 .

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof:

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.} \}$

39 / 50

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.}\}$ $J \text{ is } \Sigma_1^1$

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.}\}$ $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.}\}$ $J \text{ is } \Sigma_1^1 \text{ and } J \subseteq \mathcal{O}.$ Therefore $J \subsetneq \mathcal{O}.$

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.}\}$ J is Σ_1^1 and $J \subseteq \mathcal{O}$. Therefore $J \subsetneq \mathcal{O}$.

Theorem: Every such linear ordering is isomorphic to $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} + \beta \text{ for some } \beta < \omega_1^{CK}.$

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.}\}$ J is Σ_1^1 and $J \subseteq \mathcal{O}$. Therefore $J \subsetneq \mathcal{O}$.

Theorem: Every such linear ordering is isomorphic to $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} + \beta \text{ for some } \beta < \omega_1^{CK}.$

Definition: $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q}$ is called the *Harrison linear ordering*.

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.}\}$ J is Σ_1^1 and $J \subseteq \mathcal{O}$. Therefore $J \subsetneq \mathcal{O}$.

Theorem: Every such linear ordering is isomorphic to $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} + \beta \text{ for some } \beta < \omega_1^{CK}.$

Definition: $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q}$ is called the *Harrison linear ordering*.

It has a computable presentation, but the ω_1^{CK} cut is not even hyp.

 $\mathcal{L}_{c,\omega}$ does not satisfy compactness.

40 / 50

 $\mathcal{L}_{c,\omega}$ does not satisfy compactness. Consider the vocabulary $\{0, 1, 2, 3...\}$.

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

40 / 50

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable.

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable. Then $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ is satisfiable.

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable. Then $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ is satisfiable.

Proof: Let $J = \{ e \in \mathcal{H} : \exists \mathcal{A} \ (\mathcal{A} \models \bigwedge_{e < \alpha} \varphi_{f(e)}) \}.$

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable. Then $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ is satisfiable.

Proof: Let $J = \{e \in \mathcal{H} : \exists \mathcal{A} \ (\mathcal{A} \models \bigwedge_{e < \alpha} \varphi_{f(e)})\}$. J is Σ_1^1

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable. Then $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ is satisfiable.

Proof: Let $J = \{e \in \mathcal{H} : \exists \mathcal{A} \ (\mathcal{A} \models \bigwedge_{e < \alpha} \varphi_{f(e)})\}$. *J* is Σ_1^1 and $\mathcal{H} \upharpoonright \omega_1^{CK} \subseteq J$.

 $\begin{array}{l} \mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{\mathbf{0},\mathbf{1},\mathbf{2},\mathbf{3}...\}.\\ \text{The list } \{ \bigvee_{n\in\mathbb{N}} c=\mathbf{n}; \ c\neq\mathbf{0}, \ c\neq\mathbf{1}, \ c\neq\mathbf{2}, \ c\neq\mathbf{3},...\}\\ \text{ is finitely satisfiable but not satisfiable.} \end{array}$

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable. Then $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ is satisfiable.

Proof: Let $J = \{ e \in \mathcal{H} : \exists \mathcal{A} \ (\mathcal{A} \models \bigwedge_{e < \alpha} \varphi_{f(e)}) \}$. *J* is Σ_1^1 and $\mathcal{H} \upharpoonright \omega_1^{CK} \subseteq J$.

Furthermore, we can get \mathcal{A} to be low for ω_1 . I.e. $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

 $\mathcal{L}_{c,\omega} \text{ does not satisfy compactness. Consider the vocabulary } \{0, 1, 2, 3...\}.$ The list $\{ \bigvee_{n \in \mathbb{N}} c = \mathbf{n}; c \neq \mathbf{0}, c \neq \mathbf{1}, c \neq \mathbf{2}, c \neq \mathbf{3}, ...\}$ is finitely satisfiable but not satisfiable.

Let \mathcal{H} be the Harrison linear ordering and ω_1^{CK} be its well-founded part.

Theorem: [Barwise] Let $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ be a computable list of $\mathcal{L}_{c,\omega}$ -sentences such that, for every $\alpha < \omega_1^{CK}$, $\{\varphi_{f(e)} : e < \alpha\}$ is satisfiable. Then $\{\varphi_{f(e)} : e \in \omega_1^{CK}\}$ is satisfiable.

Proof: Let $J = \{e \in \mathcal{H} : \exists \mathcal{A} \ (\mathcal{A} \models \bigwedge_{e < \alpha} \varphi_{f(e)})\}$. J is Σ_1^1 and $\mathcal{H} \upharpoonright \omega_1^{CK} \subseteq J$.

Furthermore, we can get \mathcal{A} to be low for ω_1 . I.e. $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Corollary: [Kreisel] Let S be a Π_1^1 set of $\mathcal{L}_{c,\omega}$ -formulas. If every hyperarithmetic subset of S is satisfiable, then so is S.

Theorem: There is an ω -model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK} .

Theorem: There is an ω -model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK} .

That is, $\omega^{\mathcal{M}} \cong \omega$, and $ON^{\mathcal{M}} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q}$

Theorem: There is an ω -model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK} .

 $\text{That is, } \omega^{\mathcal{M}} \cong \omega \text{, and } ON^{\mathcal{M}} \ \cong \ \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} \ \cong \ (\omega_1^{CK})^{\mathcal{M}}.$

Theorem: There is an ω -model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK} .

That is, $\omega^{\mathcal{M}} \cong \omega$, and $ON^{\mathcal{M}} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} \cong (\omega_1^{CK})^{\mathcal{M}}$.

Proof: The set of countable models of ZFC & $\forall x \in \omega$ ($\bigcup_{n \in \mathbb{N}} x = \mathbf{n}$) is Σ_1^1 .

Theorem: There is an ω -model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK} .

That is,
$$\omega^{\mathcal{M}} \cong \omega$$
, and $ON^{\mathcal{M}} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} \cong (\omega_1^{CK})^{\mathcal{M}}$.

Proof: The set of countable models of ZFC & $\forall x \in \omega \ (\bigvee_{n \in \mathbb{N}} x = \mathbf{n})$ is Σ_1^1 . So there is such a model with $\omega_1^{\mathcal{M}} = \omega_1^{CK}$.

- **1** Π^1_1 -ness and ordinals
- Output And A state of the st
- When hyperarithmetic is recursive
- Overspill
- A structure equivalent to its own jump

Given a structure \mathcal{A} , we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1,...,a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}^{\Sigma}(a_1,...,a_j),$$

where $\varphi_{e,j}^{\Sigma}$ be the *e*th Σ_1^c formula on the variables $x_1, ..., x_j$.

Given a structure \mathcal{A} , we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1,...,a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}^{\Sigma}(a_1,...,a_j),$$

where $\varphi_{e,j}^{\Sigma}$ be the *e*th Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of* \mathcal{A} .

Given a structure \mathcal{A} , we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1,...,a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}^{\Sigma}(a_1,...,a_j),$$

where $\varphi_{e,j}^{\Sigma}$ be the *e*th Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of* \mathcal{A} .

Lemma: (1st Jump inversion theorem) $(\forall A)(\exists B) \ B' \equiv A \oplus 0'$

Given a structure \mathcal{A} , we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1,...,a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}^{\Sigma}(a_1,...,a_j),$$

where $\varphi_{e,j}^{\Sigma}$ be the *e*th Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of* \mathcal{A} .

Lemma: (1st Jump inversion theorem) $(\forall A)(\exists B)$ $B' \equiv A \oplus 0'$

Lemma: (2nd Jump inversion theorem) $DgSp(A') = \{X' : X \in DgSp(A)\}.$

Given a structure \mathcal{A} , we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1,...,a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}^{\Sigma}(a_1,...,a_j),$$

where $\varphi_{e,j}^{\Sigma}$ be the eth Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of* \mathcal{A} .

Lemma: (1st Jump inversion theorem) $(\forall A)(\exists B) \ B' \equiv A \oplus 0'$

Lemma: (2nd Jump inversion theorem) $DgSp(A') = \{X' : X \in DgSp(A)\}.$

Examples:

- If \mathcal{L} a Linear ordering, then $\mathcal{L}' \equiv (\mathcal{L}, succ, 0')$.
- If \mathcal{B} a Boolean algebra, then $\mathcal{B}' \equiv (\mathcal{B}, atom, 0')$.

44 / 50

Question: Is there a structure equivalent to its own jump?

44 / 50

Question: Is there a structure equivalent to its own jump?

Answer:

Question: Is there a structure equivalent to its own jump?

Answer: It depends

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by "equivalent."

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by "equivalent."

Definition: \mathcal{A} is Muchnik reducible to \mathcal{B} if every $X \in 2^{\omega}$ that computes a copy of \mathcal{B} also computes a copy of \mathcal{A} .

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by "equivalent."

Definition: \mathcal{A} is Muchnik reducible to \mathcal{B} if every $X \in 2^{\omega}$ that computes a copy of \mathcal{B} also computes a copy of \mathcal{A} .

Definition: \mathcal{A} is Medvedev reducible to \mathcal{B} if there is a computable operator that given copy of \mathcal{B} outputs a copy of \mathcal{A} .

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by "equivalent."

Definition: \mathcal{A} is Muchnik reducible to \mathcal{B} if every $X \in 2^{\omega}$ that computes a copy of \mathcal{B} also computes a copy of \mathcal{A} .

Definition: \mathcal{A} is Medvedev reducible to \mathcal{B} if there is a computable operator that given copy of \mathcal{B} outputs a copy of \mathcal{A} .

Theorem: No structure is Medvedev equivalent to its own jump.

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by "equivalent."

Definition: \mathcal{A} is Muchnik reducible to \mathcal{B} if every $X \in 2^{\omega}$ that computes a copy of \mathcal{B} also computes a copy of \mathcal{A} .

Definition: \mathcal{A} is Medvedev reducible to \mathcal{B} if there is a computable operator that given copy of \mathcal{B} outputs a copy of \mathcal{A} .

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

45 / 50

Proof 1: [Montalbán 2011] Uses the existence of 0^{\sharp} and builds a model of ZFC + V = L.

Proof 1: [Montalbán 2011] Uses the existence of 0^{\sharp} and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011] Uses ω_1^{CK} iterates of power set and builds a model of KP + V = L.

Proof 1: [Montalbán 2011] Uses the existence of 0^{\sharp} and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011] Uses ω_1^{CK} iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018] Uses ω_1^{CK} iterates of power set and builds a jump hierarchy.

Proof 1: [Montalbán 2011] Uses the existence of 0^{\sharp} and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011] Uses ω_1^{CK} iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018] Uses ω_1^{CK} iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.

Def: A jump-hierarchy structure is a structure $\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega)$, where $\mathcal{A} = (A; \leq)$ is a linear ordering and

 $\mathcal{A} \models R_{i,j}(a, b_1, ..., b_j) \iff b_1, ..., b_j < a \quad \& \quad \mathcal{L} \upharpoonright a \models \varphi_{i,j}^{\Sigma}(b_1, ..., b_j).$

46 / 50

Def: A jump-hierarchy structure is a structure $\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega)$, where $\mathcal{A} = (A; \leq)$ is a linear ordering and

$$\mathcal{A} \models \mathsf{R}_{i,j}(\mathsf{a}, \mathsf{b}_1, ..., \mathsf{b}_j) \iff \mathsf{b}_1, ..., \mathsf{b}_j < \mathsf{a} \quad \& \quad \mathcal{L} \upharpoonright \mathsf{a} \models \varphi_{i,j}^{\Sigma}(\mathsf{b}_1, ..., \mathsf{b}_j).$$

Obs: If a + 1 is the successor of a in \mathcal{A} , $\mathcal{J} \upharpoonright a + 1 \equiv_{Muchnik} (\mathcal{J} \upharpoonright a)'$.

46 / 50

Def: A jump-hierarchy structure is a structure $\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega)$, where $\mathcal{A} = (A; \leq)$ is a linear ordering and

$$\mathcal{A} \models \mathsf{R}_{i,j}(\mathsf{a}, \mathsf{b}_1, ..., \mathsf{b}_j) \iff \mathsf{b}_1, ..., \mathsf{b}_j < \mathsf{a} \quad \& \quad \mathcal{L} \upharpoonright \mathsf{a} \models \varphi_{i,j}^{\Sigma}(\mathsf{b}_1, ..., \mathsf{b}_j).$$

Obs: If a + 1 is the successor of a in \mathcal{A} , $\mathcal{J} \upharpoonright a + 1 \equiv_{Muchnik} (\mathcal{J} \upharpoonright a)'$.

Obs: If $\mathcal{J} \upharpoonright a \cong \mathcal{J} \upharpoonright b$ for some $a < b \in L$, $\mathcal{J} \upharpoonright a \equiv_{Muchnik} (\mathcal{J} \upharpoonright a)'$.

Def: A jump-hierarchy structure is a structure $\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega)$, where $\mathcal{A} = (A; \leq)$ is a linear ordering and

$$\mathcal{A} \models \mathsf{R}_{i,j}(\mathsf{a}, \mathsf{b}_1, ..., \mathsf{b}_j) \iff \mathsf{b}_1, ..., \mathsf{b}_j < \mathsf{a} \quad \& \quad \mathcal{L} \upharpoonright \mathsf{a} \models \varphi_{i,j}^{\Sigma}(\mathsf{b}_1, ..., \mathsf{b}_j).$$

Obs: If a + 1 is the successor of a in \mathcal{A} , $\mathcal{J} \upharpoonright a + 1 \equiv_{Muchnik} (\mathcal{J} \upharpoonright a)'$.

Obs: If $\mathcal{J} \upharpoonright a \cong \mathcal{J} \upharpoonright b$ for some $a < b \in L$, $\mathcal{J} \upharpoonright a \equiv_{Muchnik} (\mathcal{J} \upharpoonright a)'$.

Obs: If A is well-ordered, there is a jump-hierarchy structure over A.

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof:

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

- 2 \mathcal{L} is a linear ordering with a first element 0.

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

- 2 \mathcal{L} is a linear ordering with a first element 0.

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

- 2 \mathcal{L} is a linear ordering with a first element 0.
- **9** For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $\mathcal{M}^{<\omega}$.
- **5** $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

- 2 \mathcal{L} is a linear ordering with a first element 0.
- **9** For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $\mathcal{M}^{<\omega}$.
- **(** \overline{b}) if \overline{a} and \overline{b} satisfy the same atomic formulas.
- $\begin{array}{ll} \bullet & E(\alpha,\bar{a},\bar{b}) \text{ if } \forall \beta < \alpha \ \forall d \in M \ \exists c \in M \ E(\beta,\bar{a}c,\bar{b}d). \\ & \text{ and } \forall c \in M \ \exists c \in M \ E(\beta,\bar{a}c,\bar{b}d). \end{array}$

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

2 \mathcal{L} is a linear ordering with a first element 0.

- **③** For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $\mathcal{M}^{<\omega}$.
- **5** $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
- $\begin{array}{l} \bullet \quad E(\alpha,\bar{a},\bar{b}) \text{ if } \forall \beta < \alpha \ \forall d \in M \ \exists c \in M \ E(\beta,\bar{a}c,\bar{b}d). \\ \quad \text{ and } \forall c \in M \ \exists c \in M \ E(\beta,\bar{a}c,\bar{b}d). \end{array}$

$$\bigcirc e \neq f \in M$$
 and, for all $\alpha \in L$, $E(\alpha, e, f)$.

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$ -sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

2 \mathcal{L} is a linear ordering with a first element 0.

- For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $\mathcal{M}^{<\omega}$.
- **5** $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
- $\begin{array}{ll} \bullet & E(\alpha,\bar{a},\bar{b}) \text{ if } \forall \beta < \alpha \ \forall d \in M \ \exists c \in M \ E(\beta,\bar{a}c,\bar{b}d). \\ & \text{ and } \forall c \in M \ \exists c \in M \ E(\beta,\bar{a}c,\bar{b}d). \end{array}$

•
$$e \neq f \in M$$
 and, for all $\alpha \in L$, $E(\alpha, e, f)$.

and, for all $\alpha < \omega_1^{\rm CK}$

• there is an
$$a \in L$$
 such that $\mathcal{L} \upharpoonright a \cong \alpha$.

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

48 / 50

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element, $\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$ has back-and-forth property.

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element, $\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$ has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

48 / 50

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element, $\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$ has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, $E(\alpha, \cdot, \cdot)$ has at most \beth_{α} equivalence classes.

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element, $\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$ has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, $E(\alpha, \cdot, \cdot)$ has at most \beth_{α} equivalence classes.

Claim 4: If $\mathcal{L} < \omega_1^{CK}$ there is such structure satisfying 1-7.

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element, $\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$ has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, $E(\alpha, \cdot, \cdot)$ has at most \beth_{α} equivalence classes.

Claim 4: If $\mathcal{L} < \omega_1^{CK}$ there is such structure satisfying 1-7.

Claim 5: There is a model \mathcal{B} of 1-8 with $\omega_1^{\mathcal{B}} = \omega_1^{\mathcal{CK}}$ and $\mathcal{L} \cong \mathcal{H}$.

Proof: Use Barwise compactness.

The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]
ZFC - (Power set axiom) +
$$(\overbrace{\mathcal{P}(\mathcal{P}(\cdots \mathcal{P}(\omega) \cdots))}^{n \text{ times}})$$
 does not prove
the existence of a structure Muchnik equivalent to its own jump.

The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]
ZFC - (Power set axiom) +
$$(\mathcal{P}(\mathcal{P}(\cdots \mathcal{P}(\omega) \cdots)))$$
 exists)
does not prove
the existence of a structure Muchnik equivalent to its own jump.
Proof of case $n = 1$:

The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]
ZFC - (Power set axiom) +
$$(\mathcal{P}(\mathcal{P}(\cdots \mathcal{P}(\omega) \cdots)))$$
 exists)
does not prove
the existence of a structure Muchnik equivalent to its own jump.
Proof of case $n = 1$: Show that if $\mathcal{A} \equiv_{Muchnik} \mathcal{A}'$, then
 $\{X \subseteq \omega : X \text{ is c.e. in every copy of } \mathcal{A}\}$

forms an ω -model of 2nd-order arithmetic.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures