
Higher Recursion in Computable Structure Theory.

Antonio Montalbán

University of California, Berkeley

Workshop on Higher Recursion Theory
IMS – NUS – Singapore

May 2019

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 1 / 50

Summary

1 Π1
1-ness and ordinals

2 Hyperarithmeticy

3 When hyperarithmetic is recursive

4 Overspill

5 A structure equivalent to its own jump

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 2 / 50

Part I

1 Π1
1-ness and ordinals

2 Hyperarithmeticy

3 When hyperarithmetic is recursive

4 Overspill

5 A structure equivalent to its own jump

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 3 / 50

Ordinals

0, 1, 2, ...,

ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω,

ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1,

ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ...,

ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω

= ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2,

ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1,

ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ...,

ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3,

..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
...,

ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω
ω

, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω =

ω2,... ω3,..., ω4,... ωω,... ωω
ω

, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,

... ω3,..., ω4,... ωω,... ωω
ω

, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3

,..., ω4,... ωω,... ωω
ω

, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,...

ωω,... ωω
ω

, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,...

ωω
ω

, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, .

..

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ..

...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

..

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

..

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

.......................................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

....................................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

.................................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

..............................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

...........................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

........................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

.....................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

..................

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

...............

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

............

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

.........

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
,

......

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ..

...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.

An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2,... ω3,..., ω4,... ωω,... ωω

ω
, ...

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 4 / 50

Π1
1-ness and Well-Orders

Definition

A Π1
1 formula is one of the form ∀f ∈ NN ϕ(f), where ϕ is arithmetic.

Theorem: Consider S ⊆ N.
S is Π1

1 ⇐⇒ there is a computable list of linear orders Le
such that e ∈ S ↔ Le is well-ordered.

The key notion connecting Π1
1-ness and well-orders

is well-founded trees.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 5 / 50

Π1
1-ness and Well-Orders

Definition

A Π1
1 formula is one of the form ∀f ∈ NN ϕ(f), where ϕ is arithmetic.

Theorem: Consider S ⊆ N.
S is Π1

1 ⇐⇒ there is a computable list of linear orders Le
such that e ∈ S ↔ Le is well-ordered.

The key notion connecting Π1
1-ness and well-orders

is well-founded trees.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 5 / 50

Π1
1-ness and Well-Orders

Definition

A Π1
1 formula is one of the form ∀f ∈ NN ϕ(f), where ϕ is arithmetic.

Theorem: Consider S ⊆ N.
S is Π1

1 ⇐⇒ there is a computable list of linear orders Le
such that e ∈ S ↔ Le is well-ordered.

The key notion connecting Π1
1-ness and well-orders

is well-founded trees.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 5 / 50

Π1
1-ness and Well-Orders

Definition

A Π1
1 formula is one of the form ∀f ∈ NN ϕ(f), where ϕ is arithmetic.

Theorem: Consider S ⊆ N.
S is Π1

1 ⇐⇒ there is a computable list of linear orders Le
such that e ∈ S ↔ Le is well-ordered.

The key notion connecting Π1
1-ness and well-orders

is well-founded trees.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 5 / 50

Well-founded trees

Definition: A tree T ⊆ N<ω is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sup
n∈N

(rk(Tn) + 1),

where Tn = {σ ∈ N<ω : n_σ ∈ T}.

If T is ill-founded, let rk(T) =∞.

The rank function is NOT a computable function.

Lemma: Given trees S and T ,
rk(S) ≤ rk(T) ⇐⇒ there is an (-preserving embedding S → T .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 6 / 50

Well-founded trees

Definition: A tree T ⊆ N<ω is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sup
n∈N

(rk(Tn) + 1),

where Tn = {σ ∈ N<ω : n_σ ∈ T}.

If T is ill-founded, let rk(T) =∞.

The rank function is NOT a computable function.

Lemma: Given trees S and T ,
rk(S) ≤ rk(T) ⇐⇒ there is an (-preserving embedding S → T .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 6 / 50

Well-founded trees

Definition: A tree T ⊆ N<ω is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sup
n∈N

(rk(Tn) + 1),

where Tn = {σ ∈ N<ω : n_σ ∈ T}.

If T is ill-founded, let rk(T) =∞.

The rank function is NOT a computable function.

Lemma: Given trees S and T ,
rk(S) ≤ rk(T) ⇐⇒ there is an (-preserving embedding S → T .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 6 / 50

Well-founded trees

Definition: A tree T ⊆ N<ω is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sup
n∈N

(rk(Tn) + 1),

where Tn = {σ ∈ N<ω : n_σ ∈ T}.

If T is ill-founded, let rk(T) =∞.

The rank function is NOT a computable function.

Lemma: Given trees S and T ,
rk(S) ≤ rk(T) ⇐⇒ there is an (-preserving embedding S → T .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 6 / 50

From linear orderings to trees

Definition: Given a linear ordering L = (L;≤L),
define the tree of descending sequences:

TL = {〈`0, ..., `k〉 ∈ L<ω : `0 >L `1 >L · · · >L `k}.

Obs: L is well-ordered ⇐⇒ TL is well-founded.

Furthermore, if L is well-ordered, rk(TL) ∼= L.

Corollary: Deciding if a liner ordering is WO,
is as hard as deciding if a tree is WF.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 7 / 50

From linear orderings to trees

Definition: Given a linear ordering L = (L;≤L),
define the tree of descending sequences:

TL = {〈`0, ..., `k〉 ∈ L<ω : `0 >L `1 >L · · · >L `k}.

Obs: L is well-ordered ⇐⇒ TL is well-founded.

Furthermore, if L is well-ordered, rk(TL) ∼= L.

Corollary: Deciding if a liner ordering is WO,
is as hard as deciding if a tree is WF.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 7 / 50

From linear orderings to trees

Definition: Given a linear ordering L = (L;≤L),
define the tree of descending sequences:

TL = {〈`0, ..., `k〉 ∈ L<ω : `0 >L `1 >L · · · >L `k}.

Obs: L is well-ordered ⇐⇒ TL is well-founded.

Furthermore, if L is well-ordered, rk(TL) ∼= L.

Corollary: Deciding if a liner ordering is WO,
is as hard as deciding if a tree is WF.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 7 / 50

From linear orderings to trees

Definition: Given a linear ordering L = (L;≤L),
define the tree of descending sequences:

TL = {〈`0, ..., `k〉 ∈ L<ω : `0 >L `1 >L · · · >L `k}.

Obs: L is well-ordered ⇐⇒ TL is well-founded.

Furthermore, if L is well-ordered, rk(TL) ∼= L.

Corollary: Deciding if a liner ordering is WO,
is as hard as deciding if a tree is WF.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 7 / 50

From linear orderings to trees

Definition: Given a linear ordering L = (L;≤L),
define the tree of descending sequences:

TL = {〈`0, ..., `k〉 ∈ L<ω : `0 >L `1 >L · · · >L `k}.

Obs: L is well-ordered ⇐⇒ TL is well-founded.

Furthermore, if L is well-ordered, rk(TL) ∼= L.

Corollary: Deciding if a liner ordering is WO,
is as hard as deciding if a tree is WF.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 7 / 50

From trees to linear orderings

The Kleene-Brower ordering on N<ω is defined as follows:

σ ≤KB τ ⇐⇒ σ ⊇ τ ∨ ∃i
(
σ � i = τ � i ∧ σ(i) < τ(i)

)
.

Obs: A tree T ⊆ N<ω is well-founded ⇐⇒ (T ;≤KB) is well-ordered.

Lemma: rk(T) + 1 ≤ (T ;≤KB) ≤ ωrk(T) + 1.

Corollary: Deciding if a a tree is WF,
is as hard as deciding if liner ordering is WO.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 8 / 50

From trees to linear orderings

The Kleene-Brower ordering on N<ω is defined as follows:

σ ≤KB τ ⇐⇒ σ ⊇ τ ∨ ∃i
(
σ � i = τ � i ∧ σ(i) < τ(i)

)
.

Obs: A tree T ⊆ N<ω is well-founded ⇐⇒ (T ;≤KB) is well-ordered.

Lemma: rk(T) + 1 ≤ (T ;≤KB) ≤ ωrk(T) + 1.

Corollary: Deciding if a a tree is WF,
is as hard as deciding if liner ordering is WO.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 8 / 50

From trees to linear orderings

The Kleene-Brower ordering on N<ω is defined as follows:

σ ≤KB τ ⇐⇒ σ ⊇ τ ∨ ∃i
(
σ � i = τ � i ∧ σ(i) < τ(i)

)
.

Obs: A tree T ⊆ N<ω is well-founded ⇐⇒ (T ;≤KB) is well-ordered.

Lemma: rk(T) + 1 ≤ (T ;≤KB) ≤ ωrk(T) + 1.

Corollary: Deciding if a a tree is WF,
is as hard as deciding if liner ordering is WO.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 8 / 50

From trees to linear orderings

The Kleene-Brower ordering on N<ω is defined as follows:

σ ≤KB τ ⇐⇒ σ ⊇ τ ∨ ∃i
(
σ � i = τ � i ∧ σ(i) < τ(i)

)
.

Obs: A tree T ⊆ N<ω is well-founded ⇐⇒ (T ;≤KB) is well-ordered.

Lemma: rk(T) + 1 ≤ (T ;≤KB) ≤ ωrk(T) + 1.

Corollary: Deciding if a a tree is WF,
is as hard as deciding if liner ordering is WO.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 8 / 50

From trees to linear orderings

The Kleene-Brower ordering on N<ω is defined as follows:

σ ≤KB τ ⇐⇒ σ ⊇ τ ∨ ∃i
(
σ � i = τ � i ∧ σ(i) < τ(i)

)
.

Obs: A tree T ⊆ N<ω is well-founded ⇐⇒ (T ;≤KB) is well-ordered.

Lemma: rk(T) + 1 ≤ (T ;≤KB) ≤ ωrk(T) + 1.

Corollary: Deciding if a a tree is WF,
is as hard as deciding if liner ordering is WO.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 8 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:

• Every Σ1
1 formula ϕ(n) is equivalent to

∃f ∈ NN θ(f , n) where θ is Π0
1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths

⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒

index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Kleene’s O

Definition

Kleene’s O is the set of indices e of computable well-orders.

Theorem

Kleene’s O is Π1
1-complete.

Proof:
• Every Σ1

1 formula ϕ(n) is equivalent to
∃f ∈ NN θ(f , n) where θ is Π0

1.

• For a Π0
1 formula θ(f), there is a computable tree T with θ(f) ⇐⇒ f ∈ [T].

• For a Π0
1 formula θ(f , n), there is computable sequence of trees Tn such that

θ(f , n) ⇐⇒ f ∈ [Tn].

• If S ⊆ N is Π1
1 and definable by ¬ϕ(n), then

n ∈ S ⇐⇒ Tn has no paths
⇐⇒ (Tn;≤KB) is well-ordered ⇐⇒ index(Tn;≤KB) ∈ O.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 9 / 50

Omega-one-Church-Kleene

An ordinal α is computable if
there is a computable ≤A ⊆ ω2 with α ∼= (ω;≤A).

Obs: The computable ordinals are closed downwards.

Definition: Let ωCK
1 be the least non-computable ordinal.

Obs: Kleene’s O can compute a copy of ωCK
1 :

ωCK
1
∼=
∑
e∈O
Le

where Le is the linear ordering with index e.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal α is computable if
there is a computable ≤A ⊆ ω2 with α ∼= (ω;≤A).

Obs: The computable ordinals are closed downwards.

Definition: Let ωCK
1 be the least non-computable ordinal.

Obs: Kleene’s O can compute a copy of ωCK
1 :

ωCK
1
∼=
∑
e∈O
Le

where Le is the linear ordering with index e.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal α is computable if
there is a computable ≤A ⊆ ω2 with α ∼= (ω;≤A).

Obs: The computable ordinals are closed downwards.

Definition: Let ωCK
1 be the least non-computable ordinal.

Obs: Kleene’s O can compute a copy of ωCK
1 :

ωCK
1
∼=
∑
e∈O
Le

where Le is the linear ordering with index e.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal α is computable if
there is a computable ≤A ⊆ ω2 with α ∼= (ω;≤A).

Obs: The computable ordinals are closed downwards.

Definition: Let ωCK
1 be the least non-computable ordinal.

Obs: Kleene’s O can compute a copy of ωCK
1 :

ωCK
1
∼=
∑
e∈O
Le

where Le is the linear ordering with index e.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal α is computable if
there is a computable ≤A ⊆ ω2 with α ∼= (ω;≤A).

Obs: The computable ordinals are closed downwards.

Definition: Let ωCK
1 be the least non-computable ordinal.

Obs: Kleene’s O can compute a copy of ωCK
1 :

ωCK
1
∼=
∑
e∈O
Le

where Le is the linear ordering with index e.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 10 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:

• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof:

Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.

A is Σ1
1 and A ⊆ O. Let α < ωCK

1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O.

Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A.

Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

Σ1
1-bounding

Theorem: Let A ⊂ O be Σ1
1.

There is an ordinal α < ωCK
1 such that Le < α for all e ∈ A.

Proof:
• Define ∗-operation on trees satisfying rk(T ∗ S) = min(rk(T), rk(S)).

• Let {Sn}n∈N be a computable sequence of trees s.t. n ∈ A ⇐⇒ rk(Sn) =∞.

• Define α =
∑

n∈N(TLe ∗ Sn;≤KB).

Theorem: Let A ⊂ 2N be a Σ1
1 set of well-orderings of N.

There is an ordinal α < ωCK
1 such that all L < α for all L ∈ A.

Proof: Let A = {e ∈ N : (∃L ∈ A) Le 4 L}.
A is Σ1

1 and A ⊆ O. Let α < ωCK
1 be a bound for A. Then α is a bound for A too.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 11 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=)

Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.

(=>) Let f : A ≤m O. Since A is Σ1
1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>)

Let f : A ≤m O. Since A is Σ1
1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O.

Since A is Σ1
1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A].

Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

∆1
1 sets

A set is ∆1
1 if it is both Π1

1 and Σ1
1.

For α < ωCK
1 , let O(≤α) be the set of indices of computable ordinals ≤ α.

Obsevation: O(≤α) is ∆1
1.

Σ1
1-bounding: If A ⊆ O is Σ1

1, then A ⊆ O(≤α) for some α < ωCK
1 .

Theorem: A ⊆ ω is ∆1
1 ⇐⇒ A ≤m O(≤α) for some α < ωCK

1 .

Proof: (<=) Both Π1
1 sets and Σ1

1 sets are closed downward under ≤m.
(=>) Let f : A ≤m O. Since A is Σ1

1, so is f [A] ⊆ O.

Let α < ωCK
1 be a bound for f [A]. Then f : A ≤m O(≤α).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 12 / 50

Finding paths through trees

Observation: O can compute paths through any computable tree.

Lemma: Every non-empty Σ1
1 class of reals has a member ≤TO.

Theorem (Spector-Gandy)

Every non-empty Σ1
1 class of reals has a member ≤TO and low for ω1

..., where a real X is low for ω1 if ωX
1 = ωCK

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 13 / 50

Finding paths through trees

Observation: O can compute paths through any computable tree.

Lemma: Every non-empty Σ1
1 class of reals has a member ≤TO.

Theorem (Spector-Gandy)

Every non-empty Σ1
1 class of reals has a member ≤TO and low for ω1

..., where a real X is low for ω1 if ωX
1 = ωCK

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 13 / 50

Finding paths through trees

Observation: O can compute paths through any computable tree.

Lemma: Every non-empty Σ1
1 class of reals has a member ≤TO.

Theorem (Spector-Gandy)

Every non-empty Σ1
1 class of reals has a member ≤TO and low for ω1

..., where a real X is low for ω1 if ωX
1 = ωCK

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 13 / 50

Part II

1 Π1
1-ness and ordinals

2 Hyperarithmeticy

3 When hyperarithmetic is recursive

4 Overspill

5 A structure equivalent to its own jump

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 14 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set A ⊆ N is arithmetic
if it is definable in N by a first-order formula of arithmetic.

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

The following are equivalent:

A is arithmetic

A is computable in 0(n) for some n,

A is ≤m O(≤ωn) for some n

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set A ⊆ N is arithmetic
if it is definable in N by a first-order formula of arithmetic.

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

The following are equivalent:

A is arithmetic

A is computable in 0(n) for some n,

A is ≤m O(≤ωn) for some n

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set A ⊆ N is arithmetic
if it is definable in N by a first-order formula of arithmetic.

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

The following are equivalent:

A is arithmetic

A is computable in 0(n) for some n,

A is ≤m O(≤ωn) for some n

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set A ⊆ N is arithmetic
if it is definable in N by a first-order formula of arithmetic.

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

The following are equivalent:

A is arithmetic

A is computable in 0(n) for some n,

A is ≤m O(≤ωn) for some n

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set A ⊆ N is arithmetic
if it is definable in N by a first-order formula of arithmetic.

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

The following are equivalent:

A is arithmetic

A is computable in 0(n) for some n,

A is ≤m O(≤ωn) for some n

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 15 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗):

divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) ≡

∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗):

divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗):

divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡

∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 16 / 50

Depths of infinitary formulas

We count alternations of ∃ and
∨

versus ∀ and
∧

.

A Σin
n formula is one of the form:∨
i0∈N
∃ȳ0︸ ︷︷ ︸

∧
i1∈N
∀ȳ1︸ ︷︷ ︸

∨
i2∈N
∃ȳ2︸ ︷︷ ︸

∧
i3∈N
∀ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 17 / 50

Depths of infinitary formulas

We count alternations of ∃ and
∨

versus ∀ and
∧

.

A Σin
n formula is one of the form:∨
i0∈N
∃ȳ0︸ ︷︷ ︸

∧
i1∈N
∀ȳ1︸ ︷︷ ︸

∨
i2∈N
∃ȳ2︸ ︷︷ ︸

∧
i3∈N
∀ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 17 / 50

Depths of infinitary formulas

We count alternations of ∃ and
∨

versus ∀ and
∧

.

A Πin
n formula is one of the form:∧
i0∈N
∀ȳ0︸ ︷︷ ︸

∨
i1∈N
∃ȳ1︸ ︷︷ ︸

∧
i2∈N
∀ȳ2︸ ︷︷ ︸

∨
i3∈N
∃ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 17 / 50

Depths of infinitary formulas

We count alternations of ∃ and
∨

versus ∀ and
∧

.

A Πin
n formula is one of the form:∧
i0∈N
∀ȳ0︸ ︷︷ ︸

∨
i1∈N
∃ȳ1︸ ︷︷ ︸

∧
i2∈N
∀ȳ2︸ ︷︷ ︸

∨
i3∈N
∃ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free

A Σin
α formula is one of the form:

∨
i∈N
∃ȳ

(
ψi (x̄ , ȳ)

)
︸ ︷︷ ︸
Πin
β for β<α

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 17 / 50

Depths of infinitary formulas

We count alternations of ∃ and
∨

versus ∀ and
∧

.

A Πin
n formula is one of the form:∧
i0∈N
∀ȳ0︸ ︷︷ ︸

∨
i1∈N
∃ȳ1︸ ︷︷ ︸

∧
i2∈N
∀ȳ2︸ ︷︷ ︸

∨
i3∈N
∃ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free

A Πin
β formula is one of the form:

∧
i∈N
∀ȳ

(
ϕi (x̄ , ȳ)

)
︸ ︷︷ ︸
Σin
γ for γ<β

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 17 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example:

torsion(x) ≡

∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if

it has a computable tree representation.
Equivalently, if the infinitary conjunctions and disjunctions

are of computable lists of formulas.

Example:

torsion(x) ≡

∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if

the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example:

torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗ ︷ ︸︸ ︷

y ∗ y ∗ · · · ∗ y = x),

We use Lc,ω to denote the set of computably infinitary formulas.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 18 / 50

more examples

Example: There is a Πc
2α+1 formula ψα such that, on a partial ordering P,

P |= ψα(a) ⇐⇒ rkP(a) ≤ α.

The formula is built by transfinite recursion:

ψα(x) ≡ ∀y < x
∨∨
γ<β

ψγ(y).

Example: There is a Σc
2α+1 sentence ϕωα such that, for a linear ordering L,

L |= ϕωα ⇐⇒ L ≤ ωα.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 19 / 50

more examples

Example: There is a Πc
2α+1 formula ψα such that, on a partial ordering P,

P |= ψα(a) ⇐⇒ rkP(a) ≤ α.

The formula is built by transfinite recursion:

ψα(x) ≡ ∀y < x
∨∨
γ<β

ψγ(y).

Example: There is a Σc
2α+1 sentence ϕωα such that, for a linear ordering L,

L |= ϕωα ⇐⇒ L ≤ ωα.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 19 / 50

more examples

Example: There is a Πc
2α+1 formula ψα such that, on a partial ordering P,

P |= ψα(a) ⇐⇒ rkP(a) ≤ α.

The formula is built by transfinite recursion:

ψα(x) ≡ ∀y < x
∨∨
γ<β

ψγ(y).

Example: There is a Σc
2α+1 sentence ϕωα such that, for a linear ordering L,

L |= ϕωα ⇐⇒ L ≤ ωα.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 19 / 50

Hyperarithmetic sets

Definition: A set A ⊆ N is hyperarithmetic if
it is definable by an infinitary computable formula ϕ(x).

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

Theorem: Let A ⊆ N. The following are equivalent:

A is definable by a Lc,ω formula

There is a computable list {ϕn : n ∈ N} of Lc,ω sentences
over the empty vocabulary {>,⊥}

such that A = {n ∈ N : |= ϕn}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 20 / 50

Hyperarithmetic sets

Definition: A set A ⊆ N is hyperarithmetic if
it is definable by an infinitary computable formula ϕ(x).

A = {n ∈ N : (N; 0, 1,+,×,≤) |= ϕ(n)}.

Theorem: Let A ⊆ N. The following are equivalent:

A is definable by a Lc,ω formula

There is a computable list {ϕn : n ∈ N} of Lc,ω sentences
over the empty vocabulary {>,⊥}

such that A = {n ∈ N : |= ϕn}.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 20 / 50

Hyp and ∆1
1

Observation Deciding if “M |= ϕ” for ϕ infinitary is Σ1
1:

There is a valid truth-assignment to the sub-formulas making ϕ true.

Corollary: Hyperarithmetic sets are ∆1
1.

Given a computable list {Me : e ∈ N} and a Lc,ω-sentence ϕ,
{n :Mn |= ϕ} is hyperarithmetic.

Corollary: O(≤α) is hyperarithmetic.

Theorem: [Kleene] Let A ⊆ ω. The following are equivalent:

A is hyperarithmetic

A is ∆1
1.

A ≤m O(≤α) for some α < ωCK
1

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 21 / 50

Hyp and ∆1
1

Observation Deciding if “M |= ϕ” for ϕ infinitary is Σ1
1:

There is a valid truth-assignment to the sub-formulas making ϕ true.

Corollary: Hyperarithmetic sets are ∆1
1.

Given a computable list {Me : e ∈ N} and a Lc,ω-sentence ϕ,
{n :Mn |= ϕ} is hyperarithmetic.

Corollary: O(≤α) is hyperarithmetic.

Theorem: [Kleene] Let A ⊆ ω. The following are equivalent:

A is hyperarithmetic

A is ∆1
1.

A ≤m O(≤α) for some α < ωCK
1

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 21 / 50

Hyp and ∆1
1

Observation Deciding if “M |= ϕ” for ϕ infinitary is Σ1
1:

There is a valid truth-assignment to the sub-formulas making ϕ true.

Corollary: Hyperarithmetic sets are ∆1
1.

Given a computable list {Me : e ∈ N} and a Lc,ω-sentence ϕ,
{n :Mn |= ϕ} is hyperarithmetic.

Corollary: O(≤α) is hyperarithmetic.

Theorem: [Kleene] Let A ⊆ ω. The following are equivalent:

A is hyperarithmetic

A is ∆1
1.

A ≤m O(≤α) for some α < ωCK
1

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 21 / 50

Hyp and ∆1
1

Observation Deciding if “M |= ϕ” for ϕ infinitary is Σ1
1:

There is a valid truth-assignment to the sub-formulas making ϕ true.

Corollary: Hyperarithmetic sets are ∆1
1.

Given a computable list {Me : e ∈ N} and a Lc,ω-sentence ϕ,
{n :Mn |= ϕ} is hyperarithmetic.

Corollary: O(≤α) is hyperarithmetic.

Theorem: [Kleene] Let A ⊆ ω. The following are equivalent:

A is hyperarithmetic

A is ∆1
1.

A ≤m O(≤α) for some α < ωCK
1

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 21 / 50

Hyp and ∆1
1

Observation Deciding if “M |= ϕ” for ϕ infinitary is Σ1
1:

There is a valid truth-assignment to the sub-formulas making ϕ true.

Corollary: Hyperarithmetic sets are ∆1
1.

Given a computable list {Me : e ∈ N} and a Lc,ω-sentence ϕ,
{n :Mn |= ϕ} is hyperarithmetic.

Corollary: O(≤α) is hyperarithmetic.

Theorem: [Kleene] Let A ⊆ ω. The following are equivalent:

A is hyperarithmetic

A is ∆1
1.

A ≤m O(≤α) for some α < ωCK
1

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 21 / 50

Hyp and ∆1
1

Observation Deciding if “M |= ϕ” for ϕ infinitary is Σ1
1:

There is a valid truth-assignment to the sub-formulas making ϕ true.

Corollary: Hyperarithmetic sets are ∆1
1.

Given a computable list {Me : e ∈ N} and a Lc,ω-sentence ϕ,
{n :Mn |= ϕ} is hyperarithmetic.

Corollary: O(≤α) is hyperarithmetic.

Theorem: [Kleene] Let A ⊆ ω. The following are equivalent:

A is hyperarithmetic

A is ∆1
1.

A ≤m O(≤α) for some α < ωCK
1

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 21 / 50

Transfinite iterations of the Turing jump

Let L be a well-ordering with domain ⊆ N.

Definition: A jump hierarchy on L is a set H ⊆ L× N such that

H [`] = (H [<`])′,

where X [`] = {x : (`, x) ∈ X} and X [<`] = {(k, x) : k <L ` & (k, x) ∈ X}.

Obs: For every well-ordering L there is a unique jump hierarchy on it.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 22 / 50

Transfinite iterations of the Turing jump

Let L be a well-ordering with domain ⊆ N.

Definition: A jump hierarchy on L is a set H ⊆ L× N such that

H [`] = (H [<`])′,

where X [`] = {x : (`, x) ∈ X} and X [<`] = {(k , x) : k <L ` & (k, x) ∈ X}.

Obs: For every well-ordering L there is a unique jump hierarchy on it.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 22 / 50

Transfinite iterations of the Turing jump

Let L be a well-ordering with domain ⊆ N.

Definition: A jump hierarchy on L is a set H ⊆ L× N such that

H [`] = (H [<`])′,

where X [`] = {x : (`, x) ∈ X} and X [<`] = {(k , x) : k <L ` & (k, x) ∈ X}.

Obs: For every well-ordering L there is a unique jump hierarchy on it.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 22 / 50

Different presentations

Theorem: Suppose α and β are different presentations of the same ordinal.
Let Hα and Hβ be the jump hierarchies on them.
Then Hα ≡T Hβ.

Pf: Show that there is an isomorphism α→ β computable in both Hα and Hβ .

We now can define the Turing degree 0(α) for computable α < ωCK
1 .

Theorem: For n ∈ N: O(<ωn) ≡T 0(2n).

For α ∈ ωCK
1 rN: O(<ωα) ≡T 0(2α+1).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 23 / 50

Different presentations

Theorem: Suppose α and β are different presentations of the same ordinal.
Let Hα and Hβ be the jump hierarchies on them.
Then Hα ≡T Hβ.

Pf: Show that there is an isomorphism α→ β computable in both Hα and Hβ .

We now can define the Turing degree 0(α) for computable α < ωCK
1 .

Theorem: For n ∈ N: O(<ωn) ≡T 0(2n).

For α ∈ ωCK
1 rN: O(<ωα) ≡T 0(2α+1).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 23 / 50

Different presentations

Theorem: Suppose α and β are different presentations of the same ordinal.
Let Hα and Hβ be the jump hierarchies on them.
Then Hα ≡T Hβ.

Pf: Show that there is an isomorphism α→ β computable in both Hα and Hβ .

We now can define the Turing degree 0(α) for computable α < ωCK
1 .

Theorem: For n ∈ N: O(<ωn) ≡T 0(2n).

For α ∈ ωCK
1 rN: O(<ωα) ≡T 0(2α+1).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 23 / 50

Different presentations

Theorem: Suppose α and β are different presentations of the same ordinal.
Let Hα and Hβ be the jump hierarchies on them.
Then Hα ≡T Hβ.

Pf: Show that there is an isomorphism α→ β computable in both Hα and Hβ .

We now can define the Turing degree 0(α) for computable α < ωCK
1 .

Theorem: For n ∈ N: O(<ωn) ≡T 0(2n).

For α ∈ ωCK
1 rN: O(<ωα) ≡T 0(2α+1).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 23 / 50

Part III

1 Π1
1-ness and ordinals

2 Hyperarithmeticy

3 When hyperarithmetic is recursive

4 Overspill

5 A structure equivalent to its own jump

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 24 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}. E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof:

Consider E = {e : Le 4 A}. E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}.

E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}. E is Σ1
1

and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}. E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}. E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E .

Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}. E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If ≤A⊆ ω2 is a hyperarithmetic well-ordering of ω,
then A = (ω;≤A) is isomorphic to a computable well-ordering.

Proof: Consider E = {e : Le 4 A}. E is Σ1
1 and E ⊆ O.

Then there is a bound α < ωCK
1 for E . Then A ≤ α.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 25 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels.

Finally, we build a computable map from invariants to linear orderings.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 26 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank ≤ ωCK
1 . If the Ulm rank is < ωCK

1 use the

computable operator. If the Ulm rank is ωCK
1 , we need to show their divisible part must

be isomorphic to Q∞, and hence they are bi-embeddable with Q∞.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71].

The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank ≤ ωCK
1 . If the Ulm rank is < ωCK

1 use the

computable operator. If the Ulm rank is ωCK
1 , we need to show their divisible part must

be isomorphic to Q∞, and hence they are bi-embeddable with Q∞.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank ≤ ωCK
1 . If the Ulm rank is < ωCK

1 use the

computable operator. If the Ulm rank is ωCK
1 , we need to show their divisible part must

be isomorphic to Q∞, and hence they are bi-embeddable with Q∞.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank ≤ ωCK
1 .

If the Ulm rank is < ωCK
1 use the

computable operator. If the Ulm rank is ωCK
1 , we need to show their divisible part must

be isomorphic to Q∞, and hence they are bi-embeddable with Q∞.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank ≤ ωCK
1 . If the Ulm rank is < ωCK

1 use the

computable operator.

If the Ulm rank is ωCK
1 , we need to show their divisible part must

be isomorphic to Q∞, and hence they are bi-embeddable with Q∞.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank ≤ ωCK
1 . If the Ulm rank is < ωCK

1 use the

computable operator. If the Ulm rank is ωCK
1 , we need to show their divisible part must

be isomorphic to Q∞, and hence they are bi-embeddable with Q∞.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 27 / 50

Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every Lω1,ω sentence has either countably or 2ℵ0 many countable models.

Def: An Lω1,ω sentence is a counterexample to Vaught’s conjecture if

it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an Lω1,ω sentence with uncountably many models. TFAE

• T is a counterexample to Vaught’s conjecture.

• Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

By “relative to every oracle on a cone”

we mean “ (∃Y ∈ 2ω)(∀X ≥T Y) the following holds relativized to Y .”

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 28 / 50

Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every Lω1,ω sentence has either countably or 2ℵ0 many countable models.

Def: An Lω1,ω sentence is a counterexample to Vaught’s conjecture if

it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an Lω1,ω sentence with uncountably many models. TFAE

• T is a counterexample to Vaught’s conjecture.

• Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

By “relative to every oracle on a cone”

we mean “ (∃Y ∈ 2ω)(∀X ≥T Y) the following holds relativized to Y .”

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 28 / 50

Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every Lω1,ω sentence has either countably or 2ℵ0 many countable models.

Def: An Lω1,ω sentence is a counterexample to Vaught’s conjecture if

it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an Lω1,ω sentence with uncountably many models. TFAE

• T is a counterexample to Vaught’s conjecture.

• Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

By “relative to every oracle on a cone”

we mean “ (∃Y ∈ 2ω)(∀X ≥T Y) the following holds relativized to Y .”

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 28 / 50

Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every Lω1,ω sentence has either countably or 2ℵ0 many countable models.

Def: An Lω1,ω sentence is a counterexample to Vaught’s conjecture if

it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an Lω1,ω sentence with uncountably many models. TFAE

• T is a counterexample to Vaught’s conjecture.

• Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

By “relative to every oracle on a cone”

we mean “ (∃Y ∈ 2ω)(∀X ≥T Y) the following holds relativized to Y .”

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 28 / 50

Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every Lω1,ω sentence has either countably or 2ℵ0 many countable models.

Def: An Lω1,ω sentence is a counterexample to Vaught’s conjecture if

it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an Lω1,ω sentence with uncountably many models. TFAE

• T is a counterexample to Vaught’s conjecture.

• Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

By “relative to every oracle on a cone”

we mean “ (∃Y ∈ 2ω)(∀X ≥T Y) the following holds relativized to Y .”

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 28 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2ω satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E -equivalent to a computable one.

Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Obs: All the equivalence relations above are Σ1
1.

If we let the reals not in the class be equivalent, they are Σ1
1-equivalence relations on 2ω.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E -equivalent to a computable one.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2ω satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E -equivalent to a computable one.

Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Obs: All the equivalence relations above are Σ1
1.

If we let the reals not in the class be equivalent, they are Σ1
1-equivalence relations on 2ω.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E -equivalent to a computable one.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2ω satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E -equivalent to a computable one.

Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Obs: All the equivalence relations above are Σ1
1.

If we let the reals not in the class be equivalent, they are Σ1
1-equivalence relations on 2ω.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E -equivalent to a computable one.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2ω satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E -equivalent to a computable one.

Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Obs: All the equivalence relations above are Σ1
1.

If we let the reals not in the class be equivalent, they are Σ1
1-equivalence relations on 2ω.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E -equivalent to a computable one.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2ω satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E -equivalent to a computable one.

Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Obs: All the equivalence relations above are Σ1
1.

If we let the reals not in the class be equivalent, they are Σ1
1-equivalence relations on 2ω.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E -equivalent to a computable one.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2ω satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E -equivalent to a computable one.

Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Obs: All the equivalence relations above are Σ1
1.

If we let the reals not in the class be equivalent, they are Σ1
1-equivalence relations on 2ω.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E -equivalent to a computable one.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 29 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
If E is Σ1

1 and we define X F Y ⇐⇒ (X E Y) ∨ (ωX
1 = ωY

1 = ωCK
1),

then the transitive closure of F is Σ1
1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive on a cone?

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 30 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:

If E is Σ1
1 and we define X F Y ⇐⇒ (X E Y) ∨ (ωX

1 = ωY
1 = ωCK

1),
then the transitive closure of F is Σ1

1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive on a cone?

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 30 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
If E is Σ1

1 and we define X F Y ⇐⇒ (X E Y) ∨ (ωX
1 = ωY

1 = ωCK
1),

then the transitive closure of F is Σ1
1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive on a cone?

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 30 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
If E is Σ1

1 and we define X F Y ⇐⇒ (X E Y) ∨ (ωX
1 = ωY

1 = ωCK
1),

then the transitive closure of F is Σ1
1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive on a cone?

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 30 / 50

Martin’s measure

Def: A cone is a set of the form {X ∈ 2N : X ≥T Y } for some Y ∈ 2N.

Thm:[Martin] (0] exists)
Every Σ1

1 degree-invariant A ⊆ 2N either contains or is disjoint from a cone.

Def: A degree-invariant A ⊆ 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn’t.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
(∃Y)(∀X ≥T Y),

every X -hyperarithmetic real is E -equivalent to an X -computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E ,
E satisfies hyperarithmetic-is-recursive ⇐⇒ it does on a cone.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 31 / 50

Martin’s measure

Def: A cone is a set of the form {X ∈ 2N : X ≥T Y } for some Y ∈ 2N.

Thm:[Martin] (0] exists)
Every Σ1

1 degree-invariant A ⊆ 2N either contains or is disjoint from a cone.

Def: A degree-invariant A ⊆ 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn’t.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
(∃Y)(∀X ≥T Y),

every X -hyperarithmetic real is E -equivalent to an X -computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E ,
E satisfies hyperarithmetic-is-recursive ⇐⇒ it does on a cone.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 31 / 50

Martin’s measure

Def: A cone is a set of the form {X ∈ 2N : X ≥T Y } for some Y ∈ 2N.

Thm:[Martin] (0] exists)
Every Σ1

1 degree-invariant A ⊆ 2N either contains or is disjoint from a cone.

Def: A degree-invariant A ⊆ 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn’t.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
(∃Y)(∀X ≥T Y),

every X -hyperarithmetic real is E -equivalent to an X -computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E ,
E satisfies hyperarithmetic-is-recursive ⇐⇒ it does on a cone.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 31 / 50

Martin’s measure

Def: A cone is a set of the form {X ∈ 2N : X ≥T Y } for some Y ∈ 2N.

Thm:[Martin] (0] exists)
Every Σ1

1 degree-invariant A ⊆ 2N either contains or is disjoint from a cone.

Def: A degree-invariant A ⊆ 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn’t.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
(∃Y)(∀X ≥T Y),

every X -hyperarithmetic real is E -equivalent to an X -computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E ,
E satisfies hyperarithmetic-is-recursive ⇐⇒ it does on a cone.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 31 / 50

Martin’s measure

Def: A cone is a set of the form {X ∈ 2N : X ≥T Y } for some Y ∈ 2N.

Thm:[Martin] (0] exists)
Every Σ1

1 degree-invariant A ⊆ 2N either contains or is disjoint from a cone.

Def: A degree-invariant A ⊆ 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn’t.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
(∃Y)(∀X ≥T Y),

every X -hyperarithmetic real is E -equivalent to an X -computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E ,
E satisfies hyperarithmetic-is-recursive ⇐⇒ it does on a cone.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 31 / 50

A sufficient condition: a first attempt

A su�cient condition for hyp-is-rec.

Def: For K ✓ 2!, (K,⌘, r) is a ranked equivalence relation if
⌘ is an equivalence relation on K, and r : K/ ⌘! !1.

Def: (K,⌘, r) is scattered if
r�1(↵) contains countably many equivalence classes for each ↵ 2 !1.

Def: (K,⌘, r) is projective if
K and ⌘ are projective and r has a projective presentation 2! ! 2!.

Theorem ([M.] (ZFC+PD))

Let (K,⌘, r) be scattered projective ranked equivalence relation

such that 8Z 2 K, r(Z) < !Z
1 .

For every X on a cone, (i.e. 9Y 8X �T Y ,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If f : 2! ! !1 is projective and f (X) < !X
1 ,

then f is constant on a cone.

Antonio Montalbán (U.C. Berkeley) When hyperarithmetic is recursive Sept. 2012 15 / 28

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 32 / 50

A sufficient condition: a first attempt

A su�cient condition for hyp-is-rec.

Def: For K ✓ 2!, (K,⌘, r) is a ranked equivalence relation if
⌘ is an equivalence relation on K, and r : K/ ⌘! !1.

Def: (K,⌘, r) is scattered if
r�1(↵) contains countably many equivalence classes for each ↵ 2 !1.

Def: (K,⌘, r) is projective if
K and ⌘ are projective and r has a projective presentation 2! ! 2!.

Theorem ([M.] (ZFC+PD))

Let (K,⌘, r) be scattered projective ranked equivalence relation

such that 8Z 2 K, r(Z) < !Z
1 .

For every X on a cone, (i.e. 9Y 8X �T Y ,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If f : 2! ! !1 is projective and f (X) < !X
1 ,

then f is constant on a cone.

Antonio Montalbán (U.C. Berkeley) When hyperarithmetic is recursive Sept. 2012 15 / 28

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 32 / 50

The main theorem

Theorem ([M. 13] (ZFC + (0] exists) + ¬CH)

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

2 E has ℵ1 many equivalence classes.

This theorem applies to all the examples mentioned before.
Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 33 / 50

The main theorem

Theorem ([M. 13] (ZFC + (0] exists) + ¬CH)

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

2 E has ℵ1 many equivalence classes.

This theorem applies to all the examples mentioned before.
Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 33 / 50

The main theorem

Theorem ([M. 13] (ZFC + (0] exists) + ¬CH)

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

2 E has ℵ1 many equivalence classes.

This theorem applies to all the examples mentioned before.
Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 33 / 50

The main theorem

Theorem ([M. 13] (ZFC + (0] exists) + ¬CH)

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

2 E has ℵ1 many equivalence classes.

This theorem applies to all the examples mentioned before.
Examples:
• isomorphism on well-orderings;

• bi-embeddability on linear orderings;

• bi-embeddability on torsion abelian groups;

• isomorphism on models of a counterexample to Vaught’s conjecture;

• X ≡ Y ⇐⇒ ωX
1 = ωY

1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 33 / 50

The ¬CH assumption.

Theorem: [Burgess 78] Let E be Σ1
1-equivalence relation on 2ω.

Either E has perfectly many classes, or it has at most ℵ1 many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E -inequivalent.

Theorem ([M. 13] (ZFC + (0] exists))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 34 / 50

The ¬CH assumption.

Theorem: [Burgess 78] Let E be Σ1
1-equivalence relation on 2ω.

Either E has perfectly many classes, or it has at most ℵ1 many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E -inequivalent.

Theorem ([M. 13] (ZFC + (0] exists))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 34 / 50

The ¬CH assumption.

Theorem: [Burgess 78] Let E be Σ1
1-equivalence relation on 2ω.

Either E has perfectly many classes, or it has at most ℵ1 many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E -inequivalent.

Theorem ([M. 13] (ZFC + (0] exists))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 34 / 50

The ¬CH assumption.

Theorem: [Burgess 78] Let E be Σ1
1-equivalence relation on 2ω.

Either E has perfectly many classes, or it has at most ℵ1 many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E -inequivalent.

Theorem ([M. 13] (ZFC + (0] exists))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 34 / 50

The ¬CH assumption.

Theorem: [Burgess 78] Let E be Σ1
1-equivalence relation on 2ω.

Either E has perfectly many classes, or it has at most ℵ1 many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E -inequivalent.

Theorem ([M. 13] (ZFC + (0] exists))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive on a cone.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 34 / 50

The sharp assumption

Def: S ⊆ 2ω is cofinal (in the Turing degrees) if ∀Y ∃X ≥T Y (X ∈ S).

Thm: [Martin](0] exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 35 / 50

The sharp assumption

Def: S ⊆ 2ω is cofinal (in the Turing degrees) if ∀Y ∃X ≥T Y (X ∈ S).

Thm: [Martin](0] exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 35 / 50

The sharp assumption

Def: S ⊆ 2ω is cofinal (in the Turing degrees) if ∀Y ∃X ≥T Y (X ∈ S).

Thm: [Martin](0] exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 35 / 50

The sharp assumption

Def: S ⊆ 2ω is cofinal (in the Turing degrees) if ∀Y ∃X ≥T Y (X ∈ S).

Thm: [Martin](0] exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 35 / 50

The sharp assumption

Def: S ⊆ 2ω is cofinal (in the Turing degrees) if ∀Y ∃X ≥T Y (X ∈ S).

Thm: [Martin](0] exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 35 / 50

The sharp assumption

Def: S ⊆ 2ω is cofinal (in the Turing degrees) if ∀Y ∃X ≥T Y (X ∈ S).

Thm: [Martin](0] exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let E be a Σ1
1-equivalence relation on 2ω. TFAE

1 E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

2 E does not have perfectly many equivalence classes.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 35 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF .

1 Every Σ1
1-equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.

2 0] exists.

The key result in this proof is:

Thm:[Sami 99] Let S = {Y ∈ 2ω : ∃Z (∀W ≤hyp Z (W ≤T Y) & ωZ
1 = ωY

1 }.
If S contains a cone, then 0] exists.

The proof of our result uses the following equivalence: X ≡ Y iff
• X and Y are code structures Lα(A) and Lβ(B) with α = β and ωA

1 = ωB
1 ,

• or neither X nor Y are presentations of the form Lα(A) for α ∈ ω1, A ∈ 2ω.

It then uses Barwise compactness to put us in the hypothesis of Sami’s theorem:

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF .

1 Every Σ1
1-equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.

2 0] exists.

The key result in this proof is:

Thm:[Sami 99] Let S = {Y ∈ 2ω : ∃Z (∀W ≤hyp Z (W ≤T Y) & ωZ
1 = ωY

1 }.
If S contains a cone, then 0] exists.

The proof of our result uses the following equivalence: X ≡ Y iff
• X and Y are code structures Lα(A) and Lβ(B) with α = β and ωA

1 = ωB
1 ,

• or neither X nor Y are presentations of the form Lα(A) for α ∈ ω1, A ∈ 2ω.

It then uses Barwise compactness to put us in the hypothesis of Sami’s theorem:

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF .

1 Every Σ1
1-equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.

2 0] exists.

The key result in this proof is:

Thm:[Sami 99] Let S = {Y ∈ 2ω : ∃Z (∀W ≤hyp Z (W ≤T Y) & ωZ
1 = ωY

1 }.
If S contains a cone, then 0] exists.

The proof of our result uses the following equivalence: X ≡ Y iff
• X and Y are code structures Lα(A) and Lβ(B) with α = β and ωA

1 = ωB
1 ,

• or neither X nor Y are presentations of the form Lα(A) for α ∈ ω1, A ∈ 2ω.

It then uses Barwise compactness to put us in the hypothesis of Sami’s theorem:

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF .

1 Every Σ1
1-equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.

2 0] exists.

The key result in this proof is:

Thm:[Sami 99] Let S = {Y ∈ 2ω : ∃Z (∀W ≤hyp Z (W ≤T Y) & ωZ
1 = ωY

1 }.
If S contains a cone, then 0] exists.

The proof of our result uses the following equivalence: X ≡ Y iff
• X and Y are code structures Lα(A) and Lβ(B) with α = β and ωA

1 = ωB
1 ,

• or neither X nor Y are presentations of the form Lα(A) for α ∈ ω1, A ∈ 2ω.

It then uses Barwise compactness to put us in the hypothesis of Sami’s theorem:

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF .

1 Every Σ1
1-equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.

2 0] exists.

The key result in this proof is:

Thm:[Sami 99] Let S = {Y ∈ 2ω : ∃Z (∀W ≤hyp Z (W ≤T Y) & ωZ
1 = ωY

1 }.
If S contains a cone, then 0] exists.

The proof of our result uses the following equivalence: X ≡ Y iff
• X and Y are code structures Lα(A) and Lβ(B) with α = β and ωA

1 = ωB
1 ,

• or neither X nor Y are presentations of the form Lα(A) for α ∈ ω1, A ∈ 2ω.

It then uses Barwise compactness to put us in the hypothesis of Sami’s theorem:

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 36 / 50

Part IV

1 Π1
1-ness and ordinals

2 Hyperarithmeticy

3 When hyperarithmetic is recursive

4 Overspill

5 A structure equivalent to its own jump

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 37 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof:

Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1

and J ⊆ O. But O not Σ1
1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O.

But O not Σ1
1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1,

so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:

(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Ill-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let J = {e ∈ N : ∃H jump hierarchy on Le} where Le is eth comp. LO.

J is Σ1
1 and J ⊆ O. But O not Σ1

1, so J (O. Any Le for e ∈ J rO is as wanted

Theorem: [Spector 59][Gandy 60] For A ⊆ N, TFAE:

A is definable by formula of the form: ∀X (...arithmetic ...)

A is definable by formula of the form: ∃ hyp X (...arithmetic ..)

Proof:
(=>) Use that Le is well-founded ⇐⇒ there is a hyp jump hierarchy on it.

(<=) Use that the set of indices for hyp reals is Π1
1.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 38 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof:

Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1 and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}

J is Σ1
1 and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1

and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1 and J ⊆ O.

Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1 and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1 and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1 and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.

Proof: Let J = {e ∈ N : Le has no hyp. des. seq.}
J is Σ1

1 and J ⊆ O. Therefore J (O.

Theorem: Every such linear ordering is isomorphic to
ωCK

1 + ωCK
1 ·Q + β for some β < ωCK

1 .

Definition: ωCK
1 + ωCK

1 ·Q is called the Harrison linear ordering.

It has a computable presentation, but the ωCK
1 cut is not even hyp.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 39 / 50

Barwise compactness

Lc,ω does not satisfy compactness.

Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.

The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}
is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}.

J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1

and H �ωCK
1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

Barwise compactness

Lc,ω does not satisfy compactness. Consider the vocabulary {0, 1, 2, 3...}.
The list {∨∨n∈N c = n; c 6= 0, c 6= 1, c 6= 2, c 6= 3, ...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and ωCK
1 be its well-founded part.

Theorem: [Barwise] Let {ϕf (e) : e ∈ ωCK
1 } be a computable list of

Lc,ω-sentences such that, for every α < ωCK
1 , {ϕf (e) : e < α} is satisfiable.

Then {ϕf (e) : e ∈ ωCK
1 } is satisfiable.

Proof: Let J = {e ∈ H : ∃A (A |=
∧∧

e<α ϕf (e))}. J is Σ1
1 and H �ωCK

1 ⊆ J.

Furthermore, we can get A to be low for ω1. I.e. ωA1 = ωCK
1 .

Corollary: [Kreisel] Let S be a Π1
1 set of Lc,ω-formulas.

If every hyperarithmetic subset of S is satisfiable, then so is S .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 40 / 50

A different formulation for overspill arguments

Theorem: There is an ω-model M of ZFC whose well-ordered part is ωCK
1 .

That is, ωM ∼= ω, and ONM ∼= ωCK
1 + ωCK

1 ·Q ∼= (ωCK
1)M.

Proof: The set of countable models of ZFC & ∀x ∈ ω (
∨∨

n∈N x = n) is Σ1
1.

So there is such a model with ωM1 = ωCK
1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an ω-model M of ZFC whose well-ordered part is ωCK
1 .

That is, ωM ∼= ω, and ONM ∼= ωCK
1 + ωCK

1 ·Q

∼= (ωCK
1)M.

Proof: The set of countable models of ZFC & ∀x ∈ ω (
∨∨

n∈N x = n) is Σ1
1.

So there is such a model with ωM1 = ωCK
1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an ω-model M of ZFC whose well-ordered part is ωCK
1 .

That is, ωM ∼= ω, and ONM ∼= ωCK
1 + ωCK

1 ·Q ∼= (ωCK
1)M.

Proof: The set of countable models of ZFC & ∀x ∈ ω (
∨∨

n∈N x = n) is Σ1
1.

So there is such a model with ωM1 = ωCK
1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an ω-model M of ZFC whose well-ordered part is ωCK
1 .

That is, ωM ∼= ω, and ONM ∼= ωCK
1 + ωCK

1 ·Q ∼= (ωCK
1)M.

Proof: The set of countable models of ZFC & ∀x ∈ ω (
∨∨

n∈N x = n) is Σ1
1.

So there is such a model with ωM1 = ωCK
1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an ω-model M of ZFC whose well-ordered part is ωCK
1 .

That is, ωM ∼= ω, and ONM ∼= ωCK
1 + ωCK

1 ·Q ∼= (ωCK
1)M.

Proof: The set of countable models of ZFC & ∀x ∈ ω (
∨∨

n∈N x = n) is Σ1
1.

So there is such a model with ωM1 = ωCK
1 .

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 41 / 50

Part V

1 Π1
1-ness and ordinals

2 Hyperarithmeticy

3 When hyperarithmetic is recursive

4 Overspill

5 A structure equivalent to its own jump

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 42 / 50

The jump of a structure

Given a structure A, we define A′ by adding relations Ri ,j for i , j ∈ ω,

(a1, ..., aj) ∈ Ri ,j ⇐⇒ A |= ϕΣ
e,j(a1, ..., aj),

where ϕΣ
e,j be the eth Σc

1 formula on the variables x1,, xj .

Definition: We call A′ the jump of A.

Lemma: (1st Jump inversion theorem) (∀A)(∃B) B′ ≡ A⊕ 0′

Lemma: (2nd Jump inversion theorem) DgSp(A′) = {X ′ : X ∈ DgSp(A)}.

Examples:

If L a Linear ordering, then L′ ≡ (L, succ , 0′).

If B a Boolean algebra, then B′ ≡ (B, atom, 0′).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 43 / 50

The jump of a structure

Given a structure A, we define A′ by adding relations Ri ,j for i , j ∈ ω,

(a1, ..., aj) ∈ Ri ,j ⇐⇒ A |= ϕΣ
e,j(a1, ..., aj),

where ϕΣ
e,j be the eth Σc

1 formula on the variables x1,, xj .

Definition: We call A′ the jump of A.

Lemma: (1st Jump inversion theorem) (∀A)(∃B) B′ ≡ A⊕ 0′

Lemma: (2nd Jump inversion theorem) DgSp(A′) = {X ′ : X ∈ DgSp(A)}.

Examples:

If L a Linear ordering, then L′ ≡ (L, succ , 0′).

If B a Boolean algebra, then B′ ≡ (B, atom, 0′).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 43 / 50

The jump of a structure

Given a structure A, we define A′ by adding relations Ri ,j for i , j ∈ ω,

(a1, ..., aj) ∈ Ri ,j ⇐⇒ A |= ϕΣ
e,j(a1, ..., aj),

where ϕΣ
e,j be the eth Σc

1 formula on the variables x1,, xj .

Definition: We call A′ the jump of A.

Lemma: (1st Jump inversion theorem) (∀A)(∃B) B′ ≡ A⊕ 0′

Lemma: (2nd Jump inversion theorem) DgSp(A′) = {X ′ : X ∈ DgSp(A)}.

Examples:

If L a Linear ordering, then L′ ≡ (L, succ , 0′).

If B a Boolean algebra, then B′ ≡ (B, atom, 0′).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 43 / 50

The jump of a structure

Given a structure A, we define A′ by adding relations Ri ,j for i , j ∈ ω,

(a1, ..., aj) ∈ Ri ,j ⇐⇒ A |= ϕΣ
e,j(a1, ..., aj),

where ϕΣ
e,j be the eth Σc

1 formula on the variables x1,, xj .

Definition: We call A′ the jump of A.

Lemma: (1st Jump inversion theorem) (∀A)(∃B) B′ ≡ A⊕ 0′

Lemma: (2nd Jump inversion theorem) DgSp(A′) = {X ′ : X ∈ DgSp(A)}.

Examples:

If L a Linear ordering, then L′ ≡ (L, succ , 0′).

If B a Boolean algebra, then B′ ≡ (B, atom, 0′).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 43 / 50

The jump of a structure

Given a structure A, we define A′ by adding relations Ri ,j for i , j ∈ ω,

(a1, ..., aj) ∈ Ri ,j ⇐⇒ A |= ϕΣ
e,j(a1, ..., aj),

where ϕΣ
e,j be the eth Σc

1 formula on the variables x1,, xj .

Definition: We call A′ the jump of A.

Lemma: (1st Jump inversion theorem) (∀A)(∃B) B′ ≡ A⊕ 0′

Lemma: (2nd Jump inversion theorem) DgSp(A′) = {X ′ : X ∈ DgSp(A)}.

Examples:

If L a Linear ordering, then L′ ≡ (L, succ , 0′).

If B a Boolean algebra, then B′ ≡ (B, atom, 0′).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 43 / 50

The jump of a structure

Given a structure A, we define A′ by adding relations Ri ,j for i , j ∈ ω,

(a1, ..., aj) ∈ Ri ,j ⇐⇒ A |= ϕΣ
e,j(a1, ..., aj),

where ϕΣ
e,j be the eth Σc

1 formula on the variables x1,, xj .

Definition: We call A′ the jump of A.

Lemma: (1st Jump inversion theorem) (∀A)(∃B) B′ ≡ A⊕ 0′

Lemma: (2nd Jump inversion theorem) DgSp(A′) = {X ′ : X ∈ DgSp(A)}.

Examples:

If L a Linear ordering, then L′ ≡ (L, succ , 0′).

If B a Boolean algebra, then B′ ≡ (B, atom, 0′).

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 43 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer:

It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends

of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X ∈ 2ω that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 44 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]

Uses the existence of 0] and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]

Uses ωCK
1 iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018]

Uses ωCK
1 iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]

Uses the existence of 0] and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]

Uses ωCK
1 iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018]

Uses ωCK
1 iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]

Uses the existence of 0] and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]

Uses ωCK
1 iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018]

Uses ωCK
1 iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]

Uses the existence of 0] and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]

Uses ωCK
1 iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018]

Uses ωCK
1 iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]

Uses the existence of 0] and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]

Uses ωCK
1 iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbán, Schweber, Turetski 2018]

Uses ωCK
1 iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 45 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A;≤,Ri ,j : i , j ∈ ω),
where A = (A;≤) is a linear ordering and

A |= Ri ,j(a, b1, ..., bj) ⇐⇒ b1, ..., bj < a & L � a |= ϕΣ
i ,j(b1, ..., bj).

Obs: If a + 1 is the successor of a in A, J � a + 1 ≡
Muchnik

(J � a)′.

Obs: If J � a ∼= J � b for some a < b ∈ L, J � a ≡
Muchnik

(J � a)′.

Obs: If A is well-ordered, there is a jump-hierarchy structure over A.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 46 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A;≤,Ri ,j : i , j ∈ ω),
where A = (A;≤) is a linear ordering and

A |= Ri ,j(a, b1, ..., bj) ⇐⇒ b1, ..., bj < a & L � a |= ϕΣ
i ,j(b1, ..., bj).

Obs: If a + 1 is the successor of a in A, J � a + 1 ≡
Muchnik

(J � a)′.

Obs: If J � a ∼= J � b for some a < b ∈ L, J � a ≡
Muchnik

(J � a)′.

Obs: If A is well-ordered, there is a jump-hierarchy structure over A.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 46 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A;≤,Ri ,j : i , j ∈ ω),
where A = (A;≤) is a linear ordering and

A |= Ri ,j(a, b1, ..., bj) ⇐⇒ b1, ..., bj < a & L � a |= ϕΣ
i ,j(b1, ..., bj).

Obs: If a + 1 is the successor of a in A, J � a + 1 ≡
Muchnik

(J � a)′.

Obs: If J � a ∼= J � b for some a < b ∈ L, J � a ≡
Muchnik

(J � a)′.

Obs: If A is well-ordered, there is a jump-hierarchy structure over A.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 46 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A;≤,Ri ,j : i , j ∈ ω),
where A = (A;≤) is a linear ordering and

A |= Ri ,j(a, b1, ..., bj) ⇐⇒ b1, ..., bj < a & L � a |= ϕΣ
i ,j(b1, ..., bj).

Obs: If a + 1 is the successor of a in A, J � a + 1 ≡
Muchnik

(J � a)′.

Obs: If J � a ∼= J � b for some a < b ∈ L, J � a ≡
Muchnik

(J � a)′.

Obs: If A is well-ordered, there is a jump-hierarchy structure over A.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 46 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof:

Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a Lc,ω-sentence ϕ has a model of size iωCK
1

,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M,L,E , e, f) where

1 M |= ϕ

2 L is a linear ordering with a first element 0.

3 E ⊆ L×M<ω ×M<ω.

4 For each α ∈ L, E (α, ·, ·) is an equivalence relation on M<ω.

5 E (0, ā, b̄) if ā and b̄ satisfy the same atomic formulas.

6 E (α, ā, b̄) if ∀β < α ∀d ∈ M ∃c ∈ M E (β, āc, b̄d).
and ∀c ∈ M ∃c ∈ M E (β, āc, b̄d).

7 e 6= f ∈ M and, for all α ∈ L, E (α, e, f).

and, for all α < ωCK
1

there is an a ∈ L such that L � a ∼= α.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 47 / 50

Finishing the proof

Claim 1: If L is ill-founded, then e and f are automorphic.

Proof: If C ⊆ L has no least element,

{(ā, b̄) : (∃α ∈ C) E (α, ā, b̄)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, E (α, ·, ·) has at most iα equivalence classes.

Claim 4: If L < ωCK
1 there is such structure satisfying 1-7.

Claim 5: There is a model B of 1-8 with ωB1 = ωCK
1 and L ∼= H.

Proof: Use Barwise compactness.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 48 / 50

Finishing the proof

Claim 1: If L is ill-founded, then e and f are automorphic.

Proof: If C ⊆ L has no least element,

{(ā, b̄) : (∃α ∈ C) E (α, ā, b̄)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, E (α, ·, ·) has at most iα equivalence classes.

Claim 4: If L < ωCK
1 there is such structure satisfying 1-7.

Claim 5: There is a model B of 1-8 with ωB1 = ωCK
1 and L ∼= H.

Proof: Use Barwise compactness.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 48 / 50

Finishing the proof

Claim 1: If L is ill-founded, then e and f are automorphic.

Proof: If C ⊆ L has no least element,

{(ā, b̄) : (∃α ∈ C) E (α, ā, b̄)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, E (α, ·, ·) has at most iα equivalence classes.

Claim 4: If L < ωCK
1 there is such structure satisfying 1-7.

Claim 5: There is a model B of 1-8 with ωB1 = ωCK
1 and L ∼= H.

Proof: Use Barwise compactness.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 48 / 50

Finishing the proof

Claim 1: If L is ill-founded, then e and f are automorphic.

Proof: If C ⊆ L has no least element,

{(ā, b̄) : (∃α ∈ C) E (α, ā, b̄)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, E (α, ·, ·) has at most iα equivalence classes.

Claim 4: If L < ωCK
1 there is such structure satisfying 1-7.

Claim 5: There is a model B of 1-8 with ωB1 = ωCK
1 and L ∼= H.

Proof: Use Barwise compactness.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 48 / 50

Finishing the proof

Claim 1: If L is ill-founded, then e and f are automorphic.

Proof: If C ⊆ L has no least element,

{(ā, b̄) : (∃α ∈ C) E (α, ā, b̄)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, E (α, ·, ·) has at most iα equivalence classes.

Claim 4: If L < ωCK
1 there is such structure satisfying 1-7.

Claim 5: There is a model B of 1-8 with ωB1 = ωCK
1 and L ∼= H.

Proof: Use Barwise compactness.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 48 / 50

Finishing the proof

Claim 1: If L is ill-founded, then e and f are automorphic.

Proof: If C ⊆ L has no least element,

{(ā, b̄) : (∃α ∈ C) E (α, ā, b̄)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, E (α, ·, ·) has at most iα equivalence classes.

Claim 4: If L < ωCK
1 there is such structure satisfying 1-7.

Claim 5: There is a model B of 1-8 with ωB1 = ωCK
1 and L ∼= H.

Proof: Use Barwise compactness.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 48 / 50

The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]

ZFC - (Power set axiom) +
(n times︷ ︸︸ ︷
P(P(· · · P(ω) · · ·)) exists

)
does not prove

the existence of a structure Muchnik equivalent to its own jump.

Proof of case n = 1: Show that if A ≡
Muchnik

A′, then

{X ⊆ ω : X is c.e. in every copy of A}

forms an ω-model of 2nd-order arithmetic.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 49 / 50

The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]

ZFC - (Power set axiom) +
(n times︷ ︸︸ ︷
P(P(· · · P(ω) · · ·)) exists

)
does not prove

the existence of a structure Muchnik equivalent to its own jump.

Proof of case n = 1:

Show that if A ≡
Muchnik

A′, then

{X ⊆ ω : X is c.e. in every copy of A}

forms an ω-model of 2nd-order arithmetic.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 49 / 50

The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]

ZFC - (Power set axiom) +
(n times︷ ︸︸ ︷
P(P(· · · P(ω) · · ·)) exists

)
does not prove

the existence of a structure Muchnik equivalent to its own jump.

Proof of case n = 1: Show that if A ≡
Muchnik

A′, then

{X ⊆ ω : X is c.e. in every copy of A}

forms an ω-model of 2nd-order arithmetic.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 49 / 50

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures. May 2019 50 / 50

