Higher Recursion in Computable Structure Theory.

Antonio Montalban

University of California, Berkeley
Workshop on Higher Recursion Theory

IMS — NUS - Singapore
May 2019

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures

May 2019

1/50

Summary

© Mi-ness and ordinals

@ Hyperarithmeticy

© When hyperarithmetic is recursive
Q Overspill

© A structure equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 2 /50

Part |

© Mi-ness and ordinals

@ Hyperarithmeticy

© When hyperarithmetic is recursive
Q Overspill

© A structure equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 3 /50

Ordinals

0,1,2,...,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,1,2, ..., w,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,1,2,..., w,w—+1,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..., w,w+1w+2, ...,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 .. wtw

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,L,2,...,w,w+1lw+2,..,w+w=w2,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . wH+w=w2,w2+1,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2w2+1, w2+2 ..,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,1,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4
ey W W=

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4
W W= w2,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew=w?, W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W, Wl W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wrw =W WS W WY

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W, W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L werw =W, W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W W W W W L

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W W W W W L

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W WS WD W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wrw =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W W WD W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L werw =W, WS W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wrw =W, W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wrw =W, W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W, W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wew =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wrw =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L werw =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

e wrw =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

W w =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

W w =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

W w =W W W W W

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

L wrw =W, W W W W

Definition:

A linear ordering (A; <a) is well-ordered if every subset has a least element.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4
L wew =W W Wt W W

Definition:

A linear ordering (A; <a) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 /50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4
L wew =W W Wt W W

Definition:

A linear ordering (A; <a) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:
@ A is isomorphic to an initial segment of B

@ B is isomorphic to an initial segment of A

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

Ordinals

0,,2,..,w,w+lw+2 . s w+w=w2,w2+1 w2+2 .., w3,.., w4

W w =W W W W W

Definition:
A linear ordering (A; <a) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:
@ A is isomorphic to an initial segment of B

@ B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 4 / 50

M}-ness and Well-Orders

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 5 /50

M}-ness and Well-Orders

Definition
A M1 formula is one of the form Vf € NN (f), where ¢ is arithmetic. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 5 /50

M}-ness and Well-Orders

Definition

A M1 formula is one of the form Vf € NN (f), where ¢ is arithmetic. J

Theorem: Consider S C N.
Sis M} <= there is a computable list of linear orders L.
such that e € S <+ L, is well-ordered.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 5 /50

M}-ness and Well-Orders

Definition

A M1 formula is one of the form Vf € NN (f), where ¢ is arithmetic. J

Theorem: Consider S C N.
Sis M} <= there is a computable list of linear orders L.
such that e € S <+ L, is well-ordered.

The key notion connecting Mi-ness and well-orders
is well-founded trees.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 5 /50

Well-founded trees

Definition: A tree T C N<% is well-founded if it has no infinite paths. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 6 /50

Well-founded trees

Definition: A tree T C N<% is well-founded if it has no infinite paths. J

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sgg(rk(Th) +1),

where T, ={c e N<¥:n"0o € T}.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 6 /50

Well-founded trees

Definition: A tree T C N<% is well-founded if it has no infinite paths. J

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sgg(rk(Th) +1),

where T, ={c e N<¥:n"0o € T}.

If T is ill-founded, let rk(T) = occ.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 6 /50

Well-founded trees

Definition: A tree T C N<% is well-founded if it has no infinite paths. J

Definition: Let the rank of a tree be defined by transfinite recursion:

rk(T) = sgg(rk(Th) +1),

where T, ={c e N<¥:n"0o € T}.

If T is ill-founded, let rk(T) = occ.

The rank function is NOT a computable function.

Lemma: Given trees S and T,
rk(S) < rk(T) <= thereis an C-preserving embedding S — T. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 6 /50

From linear orderings to trees

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 7 /50

From linear orderings to trees

Definition: Given a linear ordering £ = (L; <;),
define the tree of descending sequences:

Te={(lo, ... li) € L=t by > 01 >p - >p Uy}

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 7 /50

From linear orderings to trees

Definition: Given a linear ordering £ = (L; <;),
define the tree of descending sequences:

Te=A{(lo, ... lx) € L= i lo >y 01 >p -+ > Uy}

Obs: L is well-ordered <= T is well-founded. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 7 /50

From linear orderings to trees

Definition: Given a linear ordering £ = (L; <;),
define the tree of descending sequences:

Te={(lo, ... li) € L=t by > 01 >p - >p Uy}

Obs: L is well-ordered <= T is well-founded. J

Furthermore, if £ is well-ordered, rk(T,) = L.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 7 /50

From linear orderings to trees

Definition: Given a linear ordering £ = (L; <;),
define the tree of descending sequences:

Te={(lo, ... li) € L=t by > 01 >p - >p Uy}

Obs: L is well-ordered <= T is well-founded. J

Furthermore, if £ is well-ordered, rk(T,) = L.

Corollary: Deciding if a liner ordering is WO,
is as hard as deciding if a tree is WF.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 7 /50

From trees to linear orderings

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 8 /50

From trees to linear orderings

The Kleene-Brower ordering on N<% is defined as follows:

c<kgT <= o271 V Ji(oli=TliANa(i)<T(i)).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 8 /50

From trees to linear orderings

The Kleene-Brower ordering on N<% is defined as follows:

c<kgT <= o271 V Ji(oli=TliANa(i)<T(i)).

Obs: A tree T C N<¥ is well-founded <= (T;<kg) is well-ordered.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 8 /50

From trees to linear orderings

The Kleene-Brower ordering on N<% is defined as follows:

c<kgT <= o271 V Ji(oli=TliANa(i)<T(i)).

Obs: A tree T C N<¥ is well-founded <= (T;<kg) is well-ordered.

Lemma: rk(T) 4+ 1< (T;<kg) <w*(1.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 8 /50

From trees to linear orderings

The Kleene-Brower ordering on N<% is defined as follows:

c<kgT <= o271 V Ji(oli=TliANa(i)<T(i)).
Obs: A tree T C N<¥ is well-founded <= (T;<kg) is well-ordered.
Lemma: rk(T) 4+ 1< (T;<kg) <w*(1.

Corollary: Deciding if a a tree is WF,
is as hard as deciding if liner ordering is WO.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 8 /50

Kleene's O

Definition
Kleene's O is the set of indices e of computable well-orders. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:

e Every Y1 formula o(n) is equivalent to
3f € NN 9(f, n) where 6 is N9,

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:
e Every Y1 formula o(n) is equivalent to
3f € NN 9(f, n) where 6 is N9,
e For a MY formula 6(f), there is a computable tree T with §(f) < f € [T].

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:
e Every Y1 formula o(n) is equivalent to
3f € NN 9(f, n) where 6 is N9,
e For a MY formula 6(f), there is a computable tree T with §(f) < f € [T].
e For a MY formula 6(f, n), there is computable sequence of trees T, such that
O(f,n) < f €[T,].

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:
e Every Y1 formula o(n) is equivalent to
3f € NN 9(f, n) where 6 is N9,
e For a MY formula 6(f), there is a computable tree T with §(f) < f € [T].
e For a MY formula 6(f, n), there is computable sequence of trees T, such that
O(f,n) < f €[T,].
e If SC Nis i and definable by —(n), then
n€S <= T, has no paths

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:
e Every Y1 formula o(n) is equivalent to
3f € NN 9(f, n) where 6 is N9,
e For a MY formula 6(f), there is a computable tree T with §(f) < f € [T].
e For a MY formula 6(f, n), there is computable sequence of trees T, such that
O(f,n) < f €[T,].
e If SC Nis i and definable by —(n), then
n€S <= T, has no paths

<= (T, <kg) is well-ordered <=

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Kleene's O

Definition

Kleene's O is the set of indices e of computable well-orders.

Theorem

Kleene's O is Mi-complete.

Proof:
e Every Y1 formula o(n) is equivalent to
3f € NN 9(f, n) where 6 is N9,
e For a MY formula 6(f), there is a computable tree T with §(f) < f € [T].
e For a MY formula 6(f, n), there is computable sequence of trees T, such that
O(f,n) < f €[T,].
e If SC Nis i and definable by —(n), then
n€S <= T, has no paths

< (T, <kg) is well-ordered <= index(T,; <kg) € O.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 9 /50

Omega-one-Church-Kleene

An ordinal « is computable if
there is a computable <4 C w? with o = (w; SA)'J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal « is computable if
there is a computable <4 C w? with o = (w; §A).J

Obs: The computable ordinals are closed downwards.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal « is computable if

there is a computable <4 C w? with o = (w; SA)'J

Obs: The computable ordinals are closed downwards.

Definition: Let w{K be the least non-computable ordinal. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal « is computable if

there is a computable <4 C w? with o = (w; §A).J

Obs: The computable ordinals are closed downwards.

Definition: Let w{K be the least non-computable ordinal. J

Obs: Kleene's O can compute a copy of wch:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 10 / 50

Omega-one-Church-Kleene

An ordinal « is computable if

there is a computable <4 C w? with o = (w; §A).J

Obs: The computable ordinals are closed downwards.

Definition: Let w{K be the least non-computable ordinal. J

Obs: Kleene's O can compute a copy of wch:
CK ~
W1 == Z ﬁe
ecO
where L, is the linear ordering with index e.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 10 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:
e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define v =3 ((Tz. * Sni <kB)-

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).

e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define =3 (Tr. * S <kB).

Theorem: Let 2 C 2V be a X1 set of well-orderings of N.
There is an ordinal a < w&K such that all £ < o for all £ € 2.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).

e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define =3 (Tr. * S <kB).

Theorem: Let 2 C 2V be a X1 set of well-orderings of N.
There is an ordinal a < w&K such that all £ < o for all £ € 2.
Proof:

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.

Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).

e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define a =" (Tz, * Sni <ks).

Theorem: Let 2 C 2V be a X1 set of well-orderings of N.
There is an ordinal a < w&K such that all £ < o for all £ € 2.

Proof: Let A={eecN:(3LeA) L. < L}.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.
Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define v =3 ((Tz. * Sni <kB)-

Theorem: Let 2 C 2V be a X1 set of well-orderings of N.
There is an ordinal a < w&K such that all £ < o for all £ € 2.

Proof: Let A={eecN:(3LeA) L. < L}.
AISZ% and A C O.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.
Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define v =3 ((Tz. * Sni <kB)-

Theorem: Let 2 C 2V be a X1 set of well-orderings of N.
There is an ordinal a < w&K such that all £ < o for all £ € 2.

Proof: Let A={eecN:(3LeA) L. < L}.
Ais¥land AC O. Let a < wiK be a bound for A.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

> 1-bounding

Theorem: Let A C O be 1.
There is an ordinal a < w&K such that L. < a for all e € A.
Proof:

e Define x-operation on trees satisfying rk(T * S) = min(rk(T), rk(S)).
e Let {S,}rcn be a computable sequence of trees s.t. n € A < rk(S,) = .
o Define v =3 ((Tz. * Sni <kB)-

Theorem: Let 2 C 2V be a X1 set of well-orderings of N.
There is an ordinal a < w&K such that all £ < o for all £ € 2.

Proof: Let A={eecN:(3LeA) L. < L}.
Ais¥land AC O. Let a < wiK be a bound for A. Then « is a bound for 2 too.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 11 / 50

Al sets

A set is Al if it is both M} and 1.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik. J

Proof: (<=)

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik. J

Proof: (<=) Both MM} sets and Y1 sets are closed downward under <,,.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik. J

Proof: (<=) Both MM} sets and Y1 sets are closed downward under <,,.

(=>)

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik. J

Proof: (<=) Both MM} sets and Y1 sets are closed downward under <,,.
(=>)Let f: A<, O.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets
A set is Al if it is both M} and 1.

For a < w1CK, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik. J

Proof: (<=) Both MM} sets and Y1 sets are closed downward under <,,.
(=>) Let f: A<,, O. Since Ais £}, sois f[A] C O.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 12 / 50

Al sets

A set is Al if it is both M} and 1.

For a < wa, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik.

Proof: (<=) Both MM} sets and Y1 sets are closed downward under <,,.
(=>) Let f: A<,, O. Since Ais £}, sois f[A] C O.
Let o < wiK be a bound for f[A].

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019

12 / 50

Al sets

A set is Al if it is both M} and 1.

For a < wa, let O(<,) be the set of indices of computable ordinals < a. J

Obsevation: O(<q) is AL

Y 1-bounding: If AC O is £, then A C Oy for some a < wiX.

Theorem: ACwis Al <= A<, O(<q) for some a < wik.

Proof: (<=) Both MM} sets and Y1 sets are closed downward under <,,.
(=>) Let f: A<,, O. Since Ais £}, sois f[A] C O.
Let v < w{¥ be a bound for f[A]. Then f: A <, O(<q).

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019

12 / 50

Finding paths through trees

Observation: O can compute paths through any computable tree.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 13 / 50

Finding paths through trees
Observation: O can compute paths through any computable tree.

Lemma: Every non-empty ¥1 class of reals has a member <70O. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 13 / 50

Finding paths through trees
Observation: O can compute paths through any computable tree.

Lemma: Every non-empty ¥1 class of reals has a member <70O. J

Theorem (Spector-Gandy)

Every non-empty Z% class of reals has a member <+0O and low for le

.., where a real X is low for wy if wff = wK.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 13 / 50

Part Il

© Mi-ness and ordinals

@ Hyperarithmeticy

© When hyperarithmetic is recursive
Q Overspill

© A structure equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 14 / 50

Arithmetic sets

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, x, <.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 15 / 50

Arithmetic sets
Vocabulary of arithmetic: 0, 1, +, x, <.
Definition: A set A C N is arithmetic

if it is definable in N by a first-order formula of arithmetic.

A={neN:(N;0,1,4+, x,<) = ¢(n)}.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, x, <.

Definition: A set A C N is arithmetic

if it is definable in N by a first-order formula of arithmetic.

A={neN:(N;0,1,4+, x,<) = ¢(n)}.

The following are equivalent:

@ A is arithmetic

o Ais computable in 0(") for some n,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 15 / 50

Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, x, <.

Definition: A set A C N is arithmetic

if it is definable in N by a first-order formula of arithmetic.

A={neN:(N;0,1,4+, x,<) = ¢(n)}.

The following are equivalent:
o A is arithmetic
o Ais computable in 0(") for some n,

o Ais <p; O(<yn) for some n

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 15 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

In a group G = (G; e,):

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) =

In a group G = (G; e, x):

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/(X*X*X*---*X: e),
—_—
neN n times

In a group G = (G; e,):

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/(X*X*X*---*X: e),
—_—
neN n times

In a group G = (G; e, *): divisible(x) =

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/ (x*x% X% %xx=e),
—_—
neN n times
In a group G = (G; e,): divisible(x) = /\ Ay(y*y*y*---*y=x),
neN

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/ (x*x% X% %xx=e),
—_—
neN n times
In a group G = (G; e,): divisible(x) = /\ Ay(y*y*y*---*y=x),
neN

v

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ¥ 4 such that, for countable structures C, C =14 <= C = A.

v

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/ (x*x% X% %xx=e),
—_—
neN n times
In a group G = (G; e,): divisible(x) = /\ Ay(y*y*y*---*y=x),
neN

v

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ¥ 4 such that, for countable structures C, C =14 <= C = A.

v

Theorem: [Scott 65] For every automorphism invariant set B C Ak, _
there is an infinitary formula ¢(X) such that B = {b € Ak : A |= ¢(b)}.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 16 / 50

Depths of infinitary formulas

We count alternations of 3 and \/ versus V and A.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 17 / 50

Depths of infinitary formulas

We count alternations of 3 and \/ versus V and A.

A YI* formula is one of the form:

\/ Iyo /\ Vin \/ dy» /\ Vg - (¢i0,i1,...,in(>_<7)707)717---,)7n)>

iEN h€eN ih€eN i3EN - -
— Y Y finitary, quantifier free

n alternations

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 17 / 50

Depths of infinitary formulas

We count alternations of 3 and \/ versus V and A.

A T1i* formula is one of the form:

/\ Vo \/ =171 /\ Vi \/ dyz - (¢i0,i1,...,in(>_<7)707)717---,)7n)>

iEN h€eN ih€eN i3EN - -
— Y Y finitary, quantifier free

n alternations

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 17 / 50

Depths of infinitary formulas

We count alternations of 3 and \/ versus ¥ and A.

A T1i formula is one of the form:

Avio V3 Az V3 - (Yo F0, Fasos 7))
ipeN iheN heN REN
™ ==\ ==\ = finitary, quantifier free

n alternations

A XI* formula is one of the form: \/ 37 (%Z)i(;(J))
ieN —
nis for p<a

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 17 / 50

Depths of infinitary formulas

We count alternations of 3 and \/ versus ¥V and A.

A T1i* formula is one of the form:

/\ Vo \/ =171 /\ Vi \/ dyz - (¢i0,i1,...,i,,(>_<7)707)71,-..7)7n)>

iEN ieN ih€eN i3EN - -
— = Y= = finitary, quantifier free

n alternations

A M3 formula is one of the form: /\ vy (‘Pi(;(a)_’))
ieN —
vir for y<p

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 17 / 50

Computable infininitary formulas

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.
Equivalently, if

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.
Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.
Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.
Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) = \/ (x*x % X% %xx=e),
—
neN n times
In a group G = (G; e, x): divisible(x) = /\ Ay(y*y*ky*---*y=x),
neN

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

Computable infininitary formulas

Definition: An infinitary formula is computable
if it has a computable tree representation.
Equivalently, if the infinitary conjunctions and disjunctions
are of computable lists of formulas.

Example: torsion(x) = \/ (x*x % X% %xx=e),
—
neN n times
In a group G = (G; e, x): divisible(x) = /\ Ay(y*y*ky*---*y=x),
neN

We use L., to denote the set of computably infinitary formulas.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 18 / 50

more examples

Example: There is a I'I§CYJrl formula 1, such that, on a partial ordering P,

PEdala) < rkp(a) <o

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 19 / 50

more examples

Example: There is a I'I§CYJrl formula 1, such that, on a partial ordering P,

PEdala) < rkp(a) <o

The formula is built by transfinite recursion:

Ya(x) = Yy <x\N/ ¢y(y).

v<B

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019

19 / 50

more examples

Example: There is a I'I§CYJrl formula 1, such that, on a partial ordering P,

PEdala) < rkp(a) <o

The formula is built by transfinite recursion:

Ya(x) = Yy <x\N/ ¢y(y).

v<B

Example: Thereisa Y5, sentence ¢, such that, for a linear ordering L,

LE pye <= L<w

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 19 / 50

Hyperarithmetic sets

Definition: A set A C N is hyperarithmetic if
it is definable by an infinitary computable formula ¢(x).

A={neN:(N;0,1,+, x,<) = ¢(n)}.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 20 / 50

Hyperarithmetic sets

Definition: A set A C N is hyperarithmetic if
it is definable by an infinitary computable formula ¢(x).

A={neN:(N;0,1,+, x,<) = ¢(n)}.

Theorem: Let A C N. The following are equivalent:
@ A s definable by a L., formula

@ There is a computable list {, : n € N} of L., sentences
over the empty vocabulary {T, L}
such that A={neN: = ¢,}.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 20 / 50

Hyp and A}

Observation Deciding if “M = ¢" for ¢ infinitary is ¥1: J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 21 /50

Hyp and A}

Observation Deciding if “M = ¢" for ¢ infinitary is ¥1:
There is a valid truth-assignment to the sub-formulas making ¢ true.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 21 / 50

Hyp and A}

Observation Deciding if “M = ¢" for ¢ infinitary is ¥1:
There is a valid truth-assignment to the sub-formulas making ¢ true.

Corollary: Hyperarithmetic sets are A%. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 21 /50

Hyp and A}

Observation Deciding if “M = ¢" for ¢ infinitary is ¥1:
There is a valid truth-assignment to the sub-formulas making ¢ true.

Corollary: Hyperarithmetic sets are A%. J

Given a computable list {M. : e € N} and a L ,-sentence ¢,
{n: M, = ¢} is hyperarithmetic.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 21 /50

Hyp and A}

Observation Deciding if “M = ¢" for ¢ infinitary is ¥1:
There is a valid truth-assignment to the sub-formulas making ¢ true.
Corollary: Hyperarithmetic sets are A%. J

Given a computable list {M. : e € N} and a L ,-sentence ¢,
{n: M, = ¢} is hyperarithmetic.

Corollary: O(<q) is hyperarithmetic. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 21 /50

Hyp and A}

Observation Deciding if “M = ¢" for ¢ infinitary is ¥1:
There is a valid truth-assignment to the sub-formulas making ¢ true.

Corollary: Hyperarithmetic sets are A%. J

Given a computable list {M. : e € N} and a L ,-sentence ¢,
{n: M, = ¢} is hyperarithmetic.

Corollary: O(<q) is hyperarithmetic. J

Theorem: [Kleene] Let A C w. The following are equivalent:
@ A is hyperarithmetic
o Ais Al
CK

0 A<m O<q) for some a < wy

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 21/ 50

Transfinite iterations of the Turing jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 22 / 50

Transfinite iterations of the Turing jump

Let £ be a well-ordering with domain C N.
Definition: A jump hierarchy on L is a set H C £ x N such that
Hl — (H[<f])/’

where X[= {x: (¢,x) € X} and XI<9 = {(k,x) : k <. £ & (k,x) € X}.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019

22 / 50

Transfinite iterations of the Turing jump

Let £ be a well-ordering with domain C N.
Definition: A jump hierarchy on L is a set H C £ x N such that
Hl — (H[<f])/’

where X[= {x: (¢,x) € X} and XI<9 = {(k,x) : k <. £ & (k,x) € X}.

Obs: For every well-ordering £ there is a unique jump hierarchy on it.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 22 /50

Different presentations

Theorem: Suppose o and (3 are different presentations of the same ordinal.
Let H, and Hg be the jump hierarchies on them.
Then H, =1 Hjs.

Pf: Show that there is an isomorphism a — 3 computable in both H, and Hjs.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 23 /50

Different presentations

Theorem: Suppose o and (3 are different presentations of the same ordinal.
Let H, and Hg be the jump hierarchies on them.
Then H, =1 Hjs.

Pf: Show that there is an isomorphism a — 3 computable in both H, and Hjs.

We now can define the Turing degree 0(%) for computable a < wICK.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 23 / 50

Different presentations

Theorem: Suppose o and (3 are different presentations of the same ordinal.
Let H, and Hg be the jump hierarchies on them.
Then H, =1 Hjs.

Pf: Show that there is an isomorphism a — 3 computable in both H, and Hjs.

We now can define the Turing degree 0(%) for computable a < wch.

Theorem: For n € N: O n) =7 0(2n) J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 23 /50

Different presentations

Theorem: Suppose o and (3 are different presentations of the same ordinal.
Let H, and Hg be the jump hierarchies on them.
Then H, =1 Hjs.

Pf: Show that there is an isomorphism a — 3 computable in both H, and Hjs.

We now can define the Turing degree 0(%) for computable a < wch.

Theorem: For n € N:' O(cn) =71 0(2n)
For a € wfK U N: Oy =7 0CFD),

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 23 /50

Part Il

© Mi-ness and ordinals

@ Hyperarithmeticy

© When hyperarithmetic is recursive
@ Overspill

© A structure equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 24 / 50

Every hyperarithmetic well-ordering is computable

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof: Consider E = {e: L. < A}.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof: Consider E = {e: L. < A}. Eis X1

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof: Consider E={e: L. < A}. Eis¥land ECO.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof: Consider E={e: L. < A}. Eis¥land ECO.
Then there is a bound a < w{K for E.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof: Consider E={e: L. < A}. Eis¥land ECO.
Then there is a bound o < wa for E. Then A < a.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If <AC w2 is a hyperarithmetic well-ordering of w,
then A = (w; <4) is isomorphic to a computable well-ordering.

Proof: Consider E={e: L. < A}. Eis¥land ECO.
Then there is a bound o < wa for E. Then A < a.

Theorem: If an infinitary formula has a hyperarithmetic representation
it is equivalent to a computable infinitary formula

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 25 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 26 / 50

A generalization to Linear orderigns

Theorem ([M. 05])

Every hyperarithmetic linear ordering
is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to
analyze their structure under embeddability.

We produce bi-embeddability invariants for linear orderings given by finite trees with

ordinal labels. Finally, we build a computable map from invariants to linear orderings.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 26 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71].

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank < wik.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank < wEk. If the Ulm rank is < w™ use the

computable operator.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 27 / 50

Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group
is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise,
Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also
have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank < wEk. If the Ulm rank is < w™ use the
computable operator. If the Ulm rank is w{¥, we need to show their divisible part must
be isomorphic to Q°°, and hence they are bi-embeddable with Q*°.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 27 / 50

Counterexample to Vaught's conjecture

Vaught’s conjecture:
Every L., ., sentence has either countably or 2% many countable models.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 28 / 50

Counterexample to Vaught's conjecture

Vaught's conjecture:

Every L., ., sentence has either countably or 2% many countable models.

Def: An L, ., sentence is a counterexample to Vaught's conjecture if

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 28 / 50

Counterexample to Vaught's conjecture

Vaught's conjecture:

Every L., ., sentence has either countably or 2% many countable models

Def: An L, ., sentence is a counterexample to Vaught's conjecture if

it has uncountably but not perfectly many countable models

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 28 / 50

Counterexample to Vaught's conjecture

Vaught's conjecture:
Every L., ., sentence has either countably or 2% many countable models.

Def: An L, ., sentence is a counterexample to Vaught's conjecture if
it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an L, ., sentence with uncountably many models. TFAE
e T is a counterexample to Vaught's conjecture.
e Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 28 / 50

Counterexample to Vaught's conjecture

Vaught's conjecture:
Every L., ., sentence has either countably or 2% many countable models.

Def: An L, ., sentence is a counterexample to Vaught's conjecture if

it has uncountably but not perfectly many countable models.

Theorem ([M. 12])

Let T be an L, ., sentence with uncountably many models. TFAE

e T is a counterexample to Vaught's conjecture.
e Relative to every oracle on a cone,
every hyperarithmetic model of T is isomorphic to a computable one,

By “relative to every oracle on a cone”

we mean “ (Y € 2¥)(VX >7 Y) the following holds relativized to Y.”

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 28 / 50

Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2% satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E-equivalent to a computable one.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2% satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

e isomorphism on well-orderings;

bi-embeddability on linear orderings;

bi-embeddability on torsion abelian groups;

isomorphism on models of a counterexample to Vaught's conjecture

when relativized;

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2% satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
e isomorphism on well-orderings;

e bi-embeddability on linear orderings;
e bi-embeddability on torsion abelian groups;
e isomorphism on models of a counterexample to Vaught's conjecture
when relativized;
e X=VY = w=uw/.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2% satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
e isomorphism on well-orderings;
e bi-embeddability on linear orderings;
e bi-embeddability on torsion abelian groups;
e isomorphism on models of a counterexample to Vaught's conjecture
when relativized;
e X=VY = w=uw/.

Obs: All the equivalence relations above are ¥1.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2% satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
e isomorphism on well-orderings;
e bi-embeddability on linear orderings;
e bi-embeddability on torsion abelian groups;
e isomorphism on models of a counterexample to Vaught's conjecture
when relativized;

e X=VY = w=uw/.

Obs: All the equivalence relations above are ¥1.
If we let the reals not in the class be equivalent, they are Yi-equivalence relations on 2%.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 29 / 50

Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2% satisfies hyperarithmetic-is-recursive
if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
e isomorphism on well-orderings;
e bi-embeddability on linear orderings;
e bi-embeddability on torsion abelian groups;
e isomorphism on models of a counterexample to Vaught's conjecture
when relativized;

e X=VY = w=uw/.

Obs: All the equivalence relations above are ¥1.
If we let the reals not in the class be equivalent, they are Yi-equivalence relations on 2%.

Def: E satisfies hyperarithmetic-is-recursive trivially
if every real is E-equivalent to a computable one.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 29 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 30 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 30 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
If Eis £} and we define X F Y <= (X E Y)V (v = w) = wfkK),
then the transitive closure of F is 1 and satisfies hyperarithmetic-is-recursive.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 30 / 50

The question

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
If Eis £} and we define X F Y <= (X E Y)V (v = w) = wfkK),
then the transitive closure of F is 1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation
satisfy hyperarithmetic-is-recursive on a cone?

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 30 / 50

Martin's measure

Def: A coneis a set of the form {X € 2 : X > Y} for some Y € 2N

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 31 /50

Martin's measure

Def: A coneis a set of the form {X € 2 : X > Y} for some Y € 2N
Thm:[Martin] (0% exists)

Every ¥} degree-invariant A C 2N either contains or is disjoint from a cone.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 31 /50

Martin's measure

Def: A coneis a set of the form {X € 2 : X > Y} for some Y € 2N
Thm:[Martin] (0% exists)

Every ¥} degree-invariant A C 2N either contains or is disjoint from a cone.

Def: A degree-invariant A C 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn't.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 31 /50

Martin's measure

Def: A coneis a set of the form {X € 2 : X > Y} for some Y € 2N

Thm:[Martin] (0% exists)
Every ¥} degree-invariant A C 2N either contains or is disjoint from a cone.

Def: A degree-invariant A C 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn't.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
BY)(¥X =7 V),

every X-hyperarithmetic real is E-equivalent to an X-computable one.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 31 /50

Martin's measure

Def: A coneis a set of the form {X € 2 : X > Y} for some Y € 2N

Thm:[Martin] (0% exists)
Every ¥} degree-invariant A C 2N either contains or is disjoint from a cone.

Def: A degree-invariant A C 2N has Martin measure 1 if it contains a cone,
and Martin measure 0 if it doesn't.

Def: E satisfies hyperarithmetic-is-recursive on a cone if,
@YX >7 Y),
every X-hyperarithmetic real is E-equivalent to an X-computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E,

E satisfies hyperarithmetic-is-recursive <= it does on a cone.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 31 /50

A sufficient condition: a first attempt

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 32 / 50

A sufficient condition: a first attempt

A sufficient condition for hyp-is-rec.

Def: For & C 2¥, (R,=,r) is a ranked equivalence relation if
= is an equivalence relation on &, and r: 8/ =— w1.

Def: (&, =,r) is scattered if

r~1(a) contains countably many equivalence classes for each o € wy.
Def: (8], =,r) is projective if

R and = are projective and r has a projective presentation 2 — 2%,

Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such that ¥Z € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If f: 2% — wy is projective and f(X) < wy,
then f is constant on a cone.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive Sept. 2012 15 / 28
Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 32 / 50

The main theorem

Theorem ([M. 13] (ZFC + (0% exists) + —~CH)
Let E be a Y1-equivalence relation on 2*. TFAE

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 33 /50

The main theorem

Theorem ([M. 13] (ZFC + (0% exists) + —~CH)
Let E be a Y1-equivalence relation on 2*. TFAE

© E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 33 /50

The main theorem

Theorem ([M. 13] (ZFC + (0% exists) + —~CH)
Let E be a Y1-equivalence relation on 2*. TFAE

© E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

@ E has ¥y many equivalence classes.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019

33 / 50

The main theorem

Theorem ([M. 13] (ZFC + (0% exists) + —~CH)
Let E be a Y1-equivalence relation on 2*. TFAE

© E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

@ E has ¥y many equivalence classes.

This theorem applies to all the examples mentioned before.
Examples:

e isomorphism on well-orderings;
bi-embeddability on linear orderings;
bi-embeddability on torsion abelian groups;

isomorphism on models of a counterexample to Vaught's conjecture;
X=Y < wf(= wly.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019

33 / 50

The —=CH assumption.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 34 / 50

The —=CH assumption.

Theorem: [Burgess 78] Let E be Z{—equivalence relation on 2.
Either E has perfectly many classes, or it has at most 8; many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 34 / 50

The —=CH assumption.

Theorem: [Burgess 78] Let E be X 1-equivalence relation on 2%
Either E has perfectly many classes, or it has at most R; many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Theorem ([M. 13] (ZFC + (0* exists))
Let E be a Y}-equivalence relation on 2. TFAE

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 34 /50

The —=CH assumption.

Theorem: [Burgess 78] Let E be Z{—equivalence relation on 2.
Either E has perfectly many classes, or it has at most R; many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Theorem ([M. 13] (ZFC + (0* exists))
Let E be a Y}-equivalence relation on 2. TFAE

@ E satisfies hyperarithmetic-is-recursive on a cone.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 34 /50

The —=CH assumption.

Theorem: [Burgess 78] Let E be Z{—equivalence relation on 2.
Either E has perfectly many classes, or it has at most R; many classes.

Recall: E has perfectly many classes if there is a perfect tree all whose paths are E-inequivalent.

Theorem ([M. 13] (ZFC + (0* exists))
Let E be a Y}-equivalence relation on 2. TFAE

@ E satisfies hyperarithmetic-is-recursive on a cone.

@ E does not have perfectly many equivalence classes.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 34 / 50

The sharp assumption

Def: S C 2% is cofinal (in the Turing degrees) if VY IX >7 Y (X € S).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 35 / 50

The sharp assumption

Def: S C 2% is cofinal (in the Turing degrees) if VY IX >7 Y (X € S).

Thm: [Martin](0% exists). If S is degree invariant and cofinal, it contains a cone.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 35 / 50

The sharp assumption

Def: S C 2% is cofinal (in the Turing degrees) if VY IX >7 Y (X € S).

Thm: [Martin](0% exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))
Let £ be a Y}-equivalence relation on 2*. TFAE

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 35 /50

The sharp assumption

Def: S C 2% is cofinal (in the Turing degrees) if VY IX >7 Y (X € S).

Thm: [Martin](0% exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))
Let £ be a Y}-equivalence relation on 2*. TFAE

© E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 35 / 50

The sharp assumption

Def: S C 2% is cofinal (in the Turing degrees) if VY IX >7 Y (X € S).

Thm: [Martin](0% exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))
Let £ be a Y}-equivalence relation on 2*. TFAE

© E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

@ E does not have perfectly many equivalence classes.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 35 / 50

The sharp assumption

Def: S C 2% is cofinal (in the Turing degrees) if VY IX >7 Y (X € S).

Thm: [Martin](0% exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))
Let £ be a Y}-equivalence relation on 2*. TFAE

© E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

@ E does not have perfectly many equivalence classes.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 35 / 50

The sharp assumption is necessary for “on a cone” version

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])
The following are equivalent over ZF.

Q@ Every Z%—equivalence relation without perfectly many classes
satisfies hyperarithmetic-is-recursive on a cone.

9 07 exists.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])
The following are equivalent over ZF.

Q@ Every Z%—equivalence relation without perfectly many classes
satisfies hyperarithmetic-is-recursive on a cone.

9 07 exists.

The key result in this proof is:
Thm:[Sami 99] Let S={Y €2¥:3Z (YW <4, Z(W <7Y) & wf=w]}.
If S contains a cone, then 0F exists.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])
The following are equivalent over ZF.

Q@ Every Z%—equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.
Q 0 exists.

The key result in this proof is:
Thm:[Sami 99] Let S = {Y € 2% : 3Z (YW <pp Z (W <7 Y) & w? = w)}.
If S contains a cone, then 0F exists.

The proof of our result uses the following equivalence: X = Y iff

e X and Y are code structures L (A) and Lg(B) with a = 8 and wi' = wf,

e or neither X nor Y are presentations of the form L, (A) for o € w1, A € 2%,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 36 / 50

The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])
The following are equivalent over ZF.

Q@ Every Z%—equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.
Q 0 exists.

The key result in this proof is:

Thm:[Sami 99] Let S={Y €2¥:3Z (YW <4, Z(W <7Y) & wf=w]}.
If S contains a cone, then 0F exists.

The proof of our result uses the following equivalence: X = Y iff
e X and Y are code structures L (A) and Lg(B) with a = 8 and wi' = wf,
e or neither X nor Y are presentations of the form L, (A) for o € w1, A € 2%,

It then uses Barwise compactness to put us in the hypothesis of Sami's theorem:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 36 / 50

Part IV

© Mi-ness and ordinals

@ Hyperarithmeticy

© When hyperarithmetic is recursive
Q@ Overspill

© A structure equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 37 / 50

[[I-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof:

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. }

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. }

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis ¥

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. }

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis¥iand JCO.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. }

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis £} and J C O. But O not 11,

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. }

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis Z% and J C O. But O not Z%, so JC O. Any L, for e € J~\ O is as wanted

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. }

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis Z% and J C O. But O not Z%, so JC O. Any L, for e € J~\ O is as wanted

Theorem: [Spector 59][Gandy 60] For A C N, TFAE:
o A is definable by formula of the form: VX (...arithmetic...)
o A is definable by formula of the form: 3 hyp X (...arithmetic..)

Proof:

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. J

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis Z% and J C O. But O not Z%, so JC O. Any L, for e € J~\ O is as wanted

Theorem: [Spector 59][Gandy 60] For A C N, TFAE:
o A is definable by formula of the form: VX (...arithmetic...)
o A is definable by formula of the form: 3 hyp X (...arithmetic..)

Proof:
(=>) Use that L, is well-founded <= there is a hyp jump hierarchy on it.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

lll-founded hierarchies

Theorem

There is a computable ill-founded liner ordering with a jump hierarchy. J

Proof: Let J = {e € N: 3H jump hierarchy on L.} where L. is eth comp. LO.
Jis Z% and J C O. But O not Z%, so JC O. Any L, for e € J~\ O is as wanted

Theorem: [Spector 59][Gandy 60] For A C N, TFAE:
o A is definable by formula of the form: VX (...arithmetic...)
o A is definable by formula of the form: 3 hyp X (...arithmetic..)

Proof:
(=>) Use that L, is well-founded <= there is a hyp jump hierarchy on it.
(<=) Use that the set of indices for hyp reals is 1.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 /50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L. has no hyp. des. seq.}

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L. has no hyp. des. seq.}
Jis ¥

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L. has no hyp. des. seq.}
Jis):% and J C O.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L. has no hyp. des. seq.}
Jis Z% and J C O. Therefore J C O.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L. has no hyp. des. seq.}
Jis Z% and J C O. Therefore J C O.

lheorem: Every such linear ordering is isomorphic to
w4+ WK Q + [for some B < wlkK
1 1 T -

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L, has no hyp. des. seq.}
Jis Z% and J C O. Therefore J C O.

Theorem: Every such linear ordering is isomorphic to
w4+ WK Q + [for some B < wlkK
1 1 T -
Definition: w + wK - Q is called the Harrison linear ordering. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Harrison's linear ordering

Theorem: There is an ill-founded computable linear ordering
with no hyperarithmetic descending sequences.J

Proof: Let J = {e € N: L. has no hyp. des. seq.}
Jis Z% and J C O. Therefore J C O.

Theorem: Every such linear ordering is isomorphic to
w4+ WK Q + [for some B < wlkK
1 1 T -
Definition: w + wK - Q is called the Harrison linear ordering. J

It has a computable presentation, but the w1CK cut is not even hyp.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 39 / 50

Barwise compactness

L., does not satisfy compactness.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.

The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.
The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}
is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wch be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of
L.-sentences such that, for every o < wiK, {¥r(e) - € < a} is satisfiable.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.
The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wch be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of
L.-sentences such that, for every o < wiK, {¥r(e) - € < a} is satisfiable.
Then {pre) - e € wkY is satisfiable.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.
The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wch be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of
L.-sentences such that, for every o < wiK, {¥r(e) - € < a} is satisfiable.
Then {pre) - e € wkY is satisfiable.

Proof: Let J={ec H : A (A MNoca Pre)}-

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.
The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wch be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of
L.-sentences such that, for every o < wiK, {¥r(e) - € < a} is satisfiable.
Then {pre) - e € wkY is satisfiable.

Proof: Let J={e € M :IA (AE Moo o)} Jis I3

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.
The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wch be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of
L.-sentences such that, for every o < wiK, {¥r(e) - € < a} is satisfiable.
Then {pre) - e € wkY is satisfiable.

Proof: Let J={e € H:JA (AE Mecn o)} Jis Tt and H [wi" C J.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.
The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wK be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of
L.-sentences such that, for every o < wiK, {#r(e) - € < a} is satisfiable.
Then {pre) - e € wkY is satisfiable.

Proof: Let J={e € H:JA (AE Mecn o)} Jis Tt and H [wi" C J.

Furthermore, we can get A to be low for wy. l.e. wi' = wfK. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 40 / 50

Barwise compactness

L., does not satisfy compactness. Consider the vocabulary {0,1,2,3...}.

The list {\W/ ,exc=m c#0, c#1, c#2, c#3,...}

is finitely satisfiable but not satisfiable.

Let H be the Harrison linear ordering and wK be its well-founded part.

Theorem: [Barwise] Let {pf(e) : € € wK} be a computable list of

L.-sentences such that, for every o < wiK, {¥r(e) - € < a} is satisfiable.

Then {pre) - e € wkY is satisfiable.

Proof: Let J={e € H:JA (AE Mecn o)} Jis Tt and H [wi" C J.

Furthermore, we can get A to be low for wy. l.e. wi' = wfK.

Corollary: [Kreisel] Let S be a M} set of L -formulas.
If every hyperarithmetic subset of S is satisfiable, then so is S.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019

40 / 50

A different formulation for overspill arguments

Theorem: There is an w-model M of ZFC whose well-ordered part is wa.J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an w-model M of ZFC whose well-ordered part is wa.J

That is, wM = w, and ONM = wch —|—w1CK -Q

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an w-model M of ZFC whose well-ordered part is wa.J

Thatis, wM =2 w, and ONM = oK L WK .Q = (WM.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an w-model M of ZFC whose well-ordered part is wa.J

That is, wM >~ w, and ONM = WK +wfK.Q = (wfM.

Proof: The set of countable models of ZFC & Vx € w (\W/,cny X = 1) is X1.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 41 / 50

A different formulation for overspill arguments

Theorem: There is an w-model M of ZFC whose well-ordered part is wa.J

Thatis, wM =2 w, and ONM = oK L WK .Q = (WM.

Proof: The set of countable models of ZFC & Vx € w (\W/,cny X = 1) is X1.

So there is such a model with wi = wK.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019

41/ 50

Part V

© Mi-ness and ordinals

@ Hyperarithmeticy

© When hyperarithmetic is recursive
@ Overspill

© A structure equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 42 / 50

The jump of a structure

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50

The jump of a structure
Given a structure A, we define A" by adding relations R;; for i, € w,
(al, ey aj) S R,'J — A li @E’j(al, ...,aj),

where cpezj be the eth ¥$ formula on the variables xi, ..., ;.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50

The jump of a structure
Given a structure A, we define A" by adding relations R;; for i, € w,
(a1,..,a)) ERj < A cpezd-(al, ey @),
where <p§j be the eth ¥$ formula on the variables xi, ..., ;.

Definition: We call A’ the jump of A. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50

The jump of a structure
Given a structure A, we define A" by adding relations R;; for i, € w,
(a1,..,a)) ERj < A gaezJ(al,...,aj),
where % ; be the eth X5 formula on the variables x,, x;.

Definition: We call A’ the jump of A.]

Lemma: (1st Jump inversion theorem) (V.A)(3B) B'= A& 0)

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50

The jump of a structure
Given a structure A, we define A" by adding relations R;; for i, € w,
(a1,..,a)) ERj < A gaezJ(al,...,aj),
where % ; be the eth X5 formula on the variables x,, x;.

Definition: We call A’ the jump of A.]

Lemma: (1st Jump inversion theorem) (V.A)(3B) B'= A& 0)

Lemma: (2nd Jump inversion theorem) DgSp(A") = {X': X € DgSp(.A)}.J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50

The jump of a structure
Given a structure A, we define A" by adding relations R;; for i, € w,
(a1,..,a)) ERj < A cpezd-(al, ey @),
where % ; be the eth X5 formula on the variables x,, x;.

Definition: We call A’ the jump of A. J

Lemma: (1st Jump inversion theorem) (V.A)(3B) B'= A& 0]

Lemma: (2nd Jump inversion theorem) DgSp(A") = {X': X € DgSp(.A)}.J

Examples:
e If £ a Linear ordering, then L' = (L, succ,0').
e If B a Boolean algebra, then B’ = (B, atom,(’).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50

Does the jump jump?

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump? J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump? J

Answer:

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?]

Answer: It depends

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump?]

Answer: It depends of what you mean by “equivalent.”

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump? J

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X € 2“ that computes a copy of B also computes a copy of A.J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump? J

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X € 2“ that computes a copy of B also computes a copy of A.J

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump? J

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if
every X € 2“ that computes a copy of B also computes a copy of A.J

Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.J

Theorem: No structure is Medvedev equivalent to its own jump.)

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

Does the jump jump?

Question: Is there a structure equivalent to its own jump? J

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if

every X € 2“ that computes a copy of B also computes a copy of A.J
Definition: A is Medvedev reducible to B if
there is a computable operator that given copy of B outputs a copy of A.J
Theorem: No structure is Medvedev equivalent to its own jump.)
Theorem: There is a structure Muchnik equivalent to its own jump.)

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 44 / 50

There is a structure Muchnik equivalent to its own jump

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalba’n 2011]
Uses the existence of 0% and builds a model of ZFC + V = L. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbén 2011]
Uses the existence of 0% and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]
Uses w{K iterates of power set and builds a model of KP + V = L.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbén 2011]
Uses the existence of 0" and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]
Uses w{K iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbdn, Schweber, Turetski 2018]
Uses wch iterates of power set and builds a jump hierarchy.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 45 / 50

There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbén 2011]
Uses the existence of 0" and builds a model of ZFC + V = L.

Proof 2: [Puzarenko 2011]
Uses w{K iterates of power set and builds a model of KP + V = L.

Proof 3: [Montalbdn, Schweber, Turetski 2018]
Uses wch iterates of power set and builds a jump hierarchy.

Theorem ([Montalbdn 2011]) J

Infinitely many iterates of the power set are needed to prove this theorem.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 45 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A; <, Rij i, j € w),
where A = (A; <) is a linear ordering and

A |: R;J(a, by, ..., bj) <~ by,..., bj <a & Lla): gOin(bl,...,bj).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 46 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A; <, Rij i, j € w),
where A = (A; <) is a linear ordering and

A |: R;J(a, by, ..., bj) <~ by,..., bj <a & Lla): gOin(bl,...,bj).

Obs: If a+ 1 is the successor of a in A, Jra+1l =,... (I [a)’.J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 46 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A; <, Rij i, j € w),
where A = (A; <) is a linear ordering and

A '= R;J(a, by, ..., bj) <~ by,..., bj <a & L7]a }= (p,-z’j(bl,...,bj).

Obs: If a+ 1 is the successor of a in A, Jra+1l =,... (I [a)’.J

Obs: If 71ax=J|bforsomea<bel, TJlTa =yom (j[a)’.J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 46 / 50

Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure J = (A; <, Rij i, j € w),
where A = (A; <) is a linear ordering and

A '= R;J(a, by, ..., bj) <~ by,..., bj <a & L7]a }= (p,-z’j(bl,...,bj).

Obs: If a+ 1 is the successor of a in A, Jra+1l =,... (I [a)’.J
Obs: If 71ax=J|bforsomea<bel, TJlTa =yom (j[a)’.J
Obs: If A is well-ordered, there is a jump-hierarchy structure over A. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 46 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
O My

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
O My

@ L is a linear ordering with a first element 0.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
O My

@ L is a linear ordering with a first element 0.
©Q EC LXMW x M<w,

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
QO MEyp
@ L is a linear ordering with a first element 0.
Q@ EC LXMW x M<v,
@ Foreach a € L, E(a,-,-) is an equivalence relation on M<¥.

@ E(0,3,b) if 3 and b satisfy the same atomic formulas.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
O My
@ L is a linear ordering with a first element 0.
Q@ EC LXMW x M<v,
@ Foreach a € L, E(a,-,-) is an equivalence relation on M<¥.
@ E(0,3,b) if 3 and b satisfy the same atomic formulas.

Q E(e,3,b)ifVB<aVdeM3ceM E(B,ic, bd).
and Ve € M 3c e M E(p, ac, bd).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
O My
@ L is a linear ordering with a first element 0.
Q@ EC LXMW x M<v,
@ Foreach a € L, E(a,-,-) is an equivalence relation on M<¥.
@ E(0,3,b) if 3 and b satisfy the same atomic formulas.

Q E(e,3,b)ifVB<aVdeM3ceM E(B,ic, bd).
and Ve € M 3c e M E(p, ac, bd).

@ ceAfeMand foralla €L, E(a,e,f).

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 47 / 50

The Hanf number of computably infinitary logic

Lemma: [Morley|[Barwise] If a L .-sentence ¢ has a model of size :lwlcx,
it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where
O My
@ L is a linear ordering with a first element 0.
Q@ EC LXMW x M<v,
@ Foreach a € L, E(a,-,-) is an equivalence relation on M<¥.
@ E(0,3,b) if 3 and b satisfy the same atomic formulas.

Q E(e,3,b)ifVB<aVdeM3ceM E(B,ic, bd).
and Ve € M 3c e M E(p, ac, bd).
@ ceAfeMand foralla €L, E(a,e,f).
and, for all o < w&K
@ there is an a € L such that L[a = a.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019

47 / 50

Finishing the proof

Claim 1: If £ is ill-founded, then e and f are automorphic. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 48 / 50

Finishing the proof

Claim 1: If £ is ill-founded, then e and f are automorphic. J

Proof: If C C L has no least element,
{(3,b) : B € C) E(a, 3, b)} has back-and-forth property.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 48 / 50

Finishing the proof

Claim 1: If £ is ill-founded, then e and f are automorphic.

Proof: If C C L has no least element,

{(3,b) : B € C) E(a, 3, b)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 48 / 50

Finishing the proof

Claim 1: If £ is ill-founded, then e and f are automorphic. J

Proof: If C C L has no least element,
{(3,b) : B € C) E(a, 3, b)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6. J

Claim 3: If a well-ordered, E(c,-,-) has at most 3, equivalence classes. J

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 48 / 50

Finishing the proof

Claim 1: If £ is ill-founded, then e and f are automorphic. J

Proof: If C C L has no least element,
{(3,b) : B € C) E(a, 3, b)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6. J

Claim 3: If a well-ordered, E(c,-,-) has at most 3, equivalence classes. J

Claim 4: If £ < wfK there is such structure satisfying 1-7. J

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 48 / 50

Finishing the proof

Claim 1: If £ is ill-founded, then e and f are automorphic. J

Proof: If C C L has no least element,
{(3,b) : B € C) E(a, 3, b)} has back-and-forth property.

Claim 2: If L is well-ordered, there is such structure satisfying 1-6. J

Claim 3: If a well-ordered, E(c,-,-) has at most 3, equivalence classes. J

Claim 4: If £ < wfK there is such structure satisfying 1-7. J

Claim 5: There is a model B of 1-8 with w? = w{K and £ = H. J

Proof: Use Barwise compactness.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 48 / 50

The necessity of infinitely many iterations of the power set

Theorem: [Montalban 11]

n times
ZFC - (Power set axiom) + (P(P(---P(w)--)) exists)

does not prove
the existence of a structure Muchnik equivalent to its own jump.

Antonio Montalbdn (U.C. Berkeley) Higher Recursion and computable structures May 2019 49 / 50

The necessity of infinitely many iterations of the power set

Theorem: [Montalban 11]

n times
ZFC - (Power set axiom) + (P(P(---P(w)---)) exists)

does not prove
the existence of a structure Muchnik equivalent to its own jump.

Proof of case n = 1:

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 49 / 50

The necessity of infinitely many iterations of the power set

Theorem: [Montalban 11]
n times
. /_/a .
ZFC - (Power set axiom) + (P(P(---P(w)---)) exists)
does not prove
the existence of a structure Muchnik equivalent to its own jump.

Proof of case n = 1: Show that if A =,, , . A’, then

{X Cw: Xisc.e. in every copy of A}

forms an w-model of 2nd-order arithmetic.

Antonio Montalban (U.C. Berkeley) Higher Recursion and computable structures May 2019 49 / 50

