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Left-distributive algebras Very large cardinals

←: Do large cardinals motivate/imply properties of left-distributive
algebras?

Question: Is there a useful or interesting property of left-distributive
algebras implied by large cardinals for which it is impossible (or very
difficult) to remove the large cardinal assumption? Are there many such
properties?

→: Do properties of left-distributive algebras imply interesting structural
properties of large cardinals or have interesting set-theoretic applications?

Question: Are properties of left-distributive algebra useful for proving
extensions of Woodin’s AD-conjecture?
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left-distributive algebras

Definition
Left-(self)-distributivity is the property:

a · (b · c) = (a · b) · (a · c).

Given an elementary embedding j : Vλ → Vλ, Aj is the algebra of
embeddings generated from j.

Theorem (Laver)

Suppose j : Vλ → Vλ is an elementary embedding. Then Aj ≈ A, the free
left-distributive algebra on one generator.

3 / 25



left-distributive algebras

Definition
Left-(self)-distributivity is the property:

a · (b · c) = (a · b) · (a · c).

Given an elementary embedding j : Vλ → Vλ, Aj is the algebra of
embeddings generated from j.

Theorem (Laver)

Suppose j : Vλ → Vλ is an elementary embedding. Then Aj ≈ A, the free
left-distributive algebra on one generator.

3 / 25



left-distributive algebras

Definition
Left-(self)-distributivity is the property:

a · (b · c) = (a · b) · (a · c).

Given an elementary embedding j : Vλ → Vλ, Aj is the algebra of
embeddings generated from j.

Theorem (Laver)

Suppose j : Vλ → Vλ is an elementary embedding. Then Aj ≈ A, the free
left-distributive algebra on one generator.

3 / 25



consequences of Laver’s theorem

Laver’s theorem establishes a connection between left-distributive algebras
and large cardinals.

Left-distributive algebras Very large cardinals

Using this connection, one can now obtain properties of the free
left-distributive algebra one one generator from large cardinals.

Theorem (Laver, Steel)

Suppose that there is an embedding j : Vλ → Vλ. Then the ordering <L, the
transitivization of the left-divisor relation on A, is a linear order.

The large cardinal assumption was later removed by Dehornoy.
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critical points of Aj have ordertype ω

Theorem (Laver-Steel)

For j : Vλ → Vλ an elementary embedding. The set

{κ < λ| ∃k ∈ Aj(crit (k) = κ)}

has order type ω.

This fact about critical points of elementary embeddings can be coded into
a fact about finite left-distributive algebras.

5 / 25



critical points of Aj have ordertype ω

Theorem (Laver-Steel)

For j : Vλ → Vλ an elementary embedding. The set

{κ < λ| ∃k ∈ Aj(crit (k) = κ)}

has order type ω.

This fact about critical points of elementary embeddings can be coded into
a fact about finite left-distributive algebras.

5 / 25



Laver tables

A2 1 2 3 4

1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

Laver showed from the existence of an elementary embedding Vλ → Vλ
that the period of the 1st row of the Laver table of An goes to infinity as
n→ ω. This is a translation of Laver’s theorem on the critical points in Aj .

Dougherty-Jech showed that this cannot be shown in primitive recursive
arithmetic.
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extending Laver’s bridge: adding more generators

One way that has been suggested for extending Laver’s theorem is
answering the following question:

Question (Laver)

Assuming any large cardinal, do there exist j, k : Vλ → Vλ such that the
algebra Aj,k generated by j and k is the free left-distributive algebra on 2
generators?

It seems hard to believe that the answer to this question is anything but
“yes”.

Conjecture (Brooke-Tayler, C., Miller)

Assume there is an elementary embedding j : Vλ+1 → Vλ+1 and write jn for
the nth iterate of j. Then for k and ` defined by

k = j ◦ j1 ◦ j2 ◦ · · · , ` = j ◦ j ◦ j1 ◦ j2 ◦ · · ·

we have Aj,k is the free left-distributive algebra on 2 generators.
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extending Laver’s theorem: embedding collections of embeddings

We take the following approach to extending Laver’s theorem:

Question

Given a collection of (arbitrarily strong) elementary embeddings E can E be
embedded into a ‘minimal’ simply-definable left-distributive algebra A,
preserving all of its algebraic structure?

Example

Suppose that j, k, ` : Vλ → Vλ are such that

j = k[k] = `[`] and ` ∈ rng (k).

Can we embed Ak,` into a simply definable left-distributive algebra A?
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embedding finite collections of embeddings

Lemma
Suppose that k1, . . . , kn : Vλ → Vλ are such that k1k1 = · · · = knkn = j and
for all 1 < i ≤ n,

k1, . . . , ki−1 ∈ rng ki.

Then Ak1,...,kn embeds into A (i.e. there is an injective algebra
homomorphism).
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where does Ak1,k2,... embed?

Does Ak1,k2,... embed into A for an infinite such sequence k1, k2, . . .?

No: as a result of the Laver-Steel theorem that the critical points of
embeddings in Aj are of ordertype ω.

Define Aω to be the direct limit of the following system, where every
embedding is π : A → A, the embedding generated by π(x) = xx, for x the
generator:

A → A→ A→ · · · .

Theorem
(C.) Suppose that j∗ : Vλ+1 → Vλ+1 is an elementary embedding and
j, k1, k2, . . . : Vλ → Vλ are such that k1k1 = k2k2 = · · · = j and for all
1 < i < ω,

k1, . . . , ki−1 ∈ rng ki.

Then Ak1,k2,... embeds into Aω.
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non-trivial elementary embeddings of Aω

Now that we have a new connection between elementary embeddings and
left-distributive algebras, can we prove any algebraic results from large
cardinals or vice versa?

Theorem (C.)

Assume there is an elementary embedding Lω(Vλ+1)→ Lω(Vλ+1). Suppose
that a ∈ Aω. Then the map πa : (Aω, ·)→ (Aω, ·) given by πa(b) = a · b is
elementary (but not surjective).
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can we complete Aω?

Aω has ordertype Q.

Question

Is there a natural left-distributive algebra on the completion of Aω?
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the algebra P

Laver showed that for P, the free left-distributive algebra on one generator
with composition ◦ satisfies the following.

Theorem (Laver)

For p, q ∈ P, the element p ◦ q is the limit of the sequence

p, pq, pqp, pqp(pq), pqp(pq)(pqp), . . .
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inverse limits

An inverse limit in this context is a limit of the form

j0 ◦ j1 ◦ j2 ◦ · · · .

Our theorem above showed that we can embed the embeddings of (certain)
inverse limits into Aω. But can we find the inverse limit in the completion
of Aω and define its action appropriately?
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what does A actually look like?

One basic problem in answering these questions comes from the complexity
of A. Can we actually draw a picture of A?

Here are the elements of rank ≤ 3:

j

j2

j3

jjj
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rank ≤ 4 elements in Aj

j

j2

jjj

jjjj

(jjj)(jj)

j3

j3j

j(jjj)

(jj)(jjj)

j4
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rank ≤ 5
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rank ≤ 6
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rank ≤ 6 gap
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question on A

These visualizations (created with the help of Jacob Webb) give evidence
for the existence of gaps. Gaps could perhaps be used to extend A.

Conjecture

For any a ≤L c <L b ∈ A, there is no d with b <L d ≤ ba such that c is a
left-divisor of d.

The case ‘c divides b’ is true.

Proposition (C.)

Assume there is an elementary embedding Lω(Vλ+1)→ Lω(Vλ+1). Then for
any a ≤L c <L b ∈ A such that c left-divides b, there is no d with
b <L d ≤ ba such that c is a left-divisor of d.

The proof uses the elementarity of πc : Aω → Aω.
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an extension of Aω

Define A∗
ω to be the completion of Aω under the <L-topology. Extend

application to A∗
ω (as generated) by the definition

a·b = sup{c ∈ Aω| ∀d ∈ [b, a)(‘d below b’→ ∀e ∈ (a, c) (d does not left-divide e))}.

‘d below b’ would be possible by ‘reading the gaps’.

Question

Does the extension A∗
ω define application consistent with application in Aω,

and consistent with Pω (the result of adding composition to Aω)?
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extensions of Aω

Clearly, A∗
ω will not succeed in capturing the entire algebra of embeddings

(since Aω is countable).

But we can define many similar structures using direct limit systems. We
skip the details of this and refer to these as AR for various R.

We can in fact define a maximal R, Rmax.
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maximality of ARmax .

Lemma (C.)

If S is a finite set of embeddings which is rigid and square-closed then AS
embeds into A.

Rigid means that S is linearly ordered by the range relation.

Square-closed means that for j, k ∈ S, their least common power (i.e.
iterated square) must be in S.

Theorem (C.)

If S is rigid and square-closed then AS embeds into ARmax .

ARmax is linearly ordered by <L.
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questions about ARmax

If the algebra does extend coherently to inverse limits (and other
conjectures above are true), then you would expect to have an embedding

A2 → A∗
ω.
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obtaining properties of large cardinals from these algebras?

Is there any hope for obtaining properties of large cardinals from these
algebras?

Guess: Homogeneity properties of A∗
ω might be useful for obtaining

properties of inverse limits.
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