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In the “Celestial Emporium of Benevolent Knowledge. . . it is written
that animals are divided into

(a) those that belong to the Emperor,
(b) embalmed ones,
(c) those that are trained,
(d) suckling pigs,
(e) mermaids,
(f) fabulous ones,
(g) stray dogs,
(h) those that are included in this classification,
(i) those that tremble as if they were mad,
(j) innumerable ones,
(k) those drawn with a very fine camel’s hair brush,
(l) others,

(m) those that have just broken a flower vase,
(n) those that resemble flies from a distance.”

Jorge Luis Borges, “The Analytical Language of John Wilkins”
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Towards a taxonomy of the enumeration degrees

I am interested in
identifying and
understanding
natural subclasses
of the enumeration
degrees.

We know some:
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Towards a taxonomy of the enumeration degrees

How might we identify interesting subclasses?

(1) Consider the degrees containing some specific kind of set, e.g., Σ0
2

degrees, 1-generic degrees, or degrees containing sets of the form
A‘A (the total degrees).

(2) Consider classes of degrees with natural (first order) definitions
in the partial order.

(3) Consider the degrees of points in (sufficiently effective) nice
topological spaces, e.g., the continuous degrees, the degrees of
points in Cr0, 1s. (See Kihara, Ng, and Pauly for more examples.)

(4) Consider classes of degrees that “behave similarly” to the Turing
degrees.

Note. These approaches are not mutually exclusive (some classes
have characterizations of all four types!), and are unlikely to be
exhaustive.
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Which e-degrees behave like Turing degrees?

For this talk, we are interested in the (4)th approach.

Relativizing to an enumeration oracle
§ Many important notions in computability theory are expressed in
terms of c.e. sets.

§ Of course, when we relativize these notions to a Turing oracle X,
we use X-c.e. sets.

§ Relativizing to an enumeration oracle A is straightforward:
simply replace “X-c.e.” with “c.e. in every enumeration of A”
(i.e., ďe A).

Sometimes, results in the Turing degrees relativize to enumeration
oracles. Frequently, they do not, but that’s okay!

Goal. Define new (or characterize known) classes of enumeration
degrees as those relative to which a given theorem remains true.
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Preliminaries: the enumeration degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A Ď ω is enumeration reducible to B Ď ω (A ďe B) if
there is a uniform way to enumerate A from an enumeration of B.

Definition. A ďe B if there is a c.e. set W such that

A “ tn : pDeq xn, ey PW and De Ď Bu,

where De is the eth finite set in a canonical enumeration.

The degree structure De induced by ďe is called the enumeration
degrees. It is an upper semi-lattice with a least element (the degree of
all c.e. sets).
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Preliminaries: the total enumeration degrees

Proposition. A ďT B iff A‘A is B-c.e. iff A‘A ďe B ‘B.

This suggests a natural embedding of the Turing degrees into the
enumeration degrees.

Proposition. The embedding ι : DT Ñ De, defined by

ιpdT pAqq “ depA‘Aq,

preserves the order and the least upper bound (and even the jump).

Definition. The total degrees are the image of the Turing degrees
under this embedding (i.e., they are the enumeration degrees that
contain a set of the form A‘A).

It is easy to see that there are nontotal enumeration degrees. In fact,
a sufficiently generic A Ď ω has nontotal degree.
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Case Study: PA relative to xAy1

1Notation. We use xAy to indicate that we are viewing A Ď ω as an
enumeration oracle.



Relativizing the PA degrees

Recall. Let A Ď ω. We call U Ď 2ω a Σ0
1rAs class if there is an A-c.e.

set of strings W , such that U “ rW s,

rW s “ tX P 2ω : pDσ PW q X ľ σu.

Let’s translate this to the enumeration oracle case:

Definition. Let A Ď ω. Call U Ď 2ω a Σ0
1xAy class if there is a set of

strings W ďe A, such that U “ rW s.

A Π0
1xAy class is the complement of a Σ0

1xAy class.

Note that a Π0
1

@

A‘A
D

class is just a Π0
1rAs class in the usual sense.

Definition. xBy is PA relative to xAy if in every nonempty Π0
1xAy

class P there is an X P P such that X ‘X ďe B.

We treat members of P as total objects, but it doesn’t matter!
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The PA degrees relative to xBy

Do the PA degrees relative to xAy behave like they do in the Turing
degrees? More specifically:

(a) Can xAy be PA relative to xAy? Yes!

(b) Does xBy being PA relative to xAy imply that B ěe A? No!

(c) Must there be a nonempty Π0
1xAy class P such that every B P P

is PA relative to xAy, i.e., a “universal” Π0
1xAy class? No!

So “PA relative to xAy” can behave very differently from our
Turing-centric expectations.

But this is good for our purposes: we can ask for which class of
enumerations oracles do each of these properties hold.
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xselfy-PA degrees

(a) Can xAy be PA relative to xAy? Yes!

In other words, the fact that there is an infinite Π0
1 (even computable)

tree T Ď 2ăω with no computable paths (Kleene 1952) does not
relativize to an arbitrary enumeration degree.

Definition (M., Soskova)
We say that A is xself y-PA if xAy is PA relative to xAy.
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xselfy-PA degrees exist

Proposition
There is a xselfy-PA set A.

Proof.
Fix a sequence of sets xXeyePω such that Xe`1 is PA relative to Xe.
(Note that Xe ”T

À

iďeXi.) We build A in stages, where As will be
determined on finitely many columns plus finitely much more.

At stage s “ 2e, we copy Xe ‘Xe to (the as of yet undetermined part
of) the eth column of As to get As`1.

At stage s “ 2e` 1, we try to extend As by finitely much to force the
eth Π0

1xAy class, PexAy, to be empty. If we can, great!

If we can’t, let Z be the set where all undetermined positions of As
are replaced by 1s. Then P xZy Ď P xAy is a nonempty Π0

1rXes class.
Therefore, it has an element below Xe`1 ‘Xe`1, which will be coded
into A (at stage s` 1).
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Where are the xselfy-PA degrees?

With a little more care, we can show:

Proposition

1. If I Ď Ppωq is a countable Scott ideal (i.e., for all X P I there is a
Y P I that is PA relative to X), then there is a xselfy-PA set A
such that X ‘X ďe A if and only if X P I.

2. X is PA relative to Y if and only if there is a xselfy-PA set A
such that Y ‘ Y ďe A ď X ‘X.

Corollary. There is a ∆0
2 xselfy-PA degree.

Proposition. If A is xselfy-PA, then I “ tX : X ‘X ďe Au is a
countable Scott ideal.
Proof. Fix X P I and let P be a nonempty Π0

1rXs class containing
only elements PA above X. Since P is also a Π0

1xAy class, there is a
Y P P such that Y ‘Y ďe A. So Y P I and Y is PA relative to X.
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Continuous degrees

(b) Does xBy being PA relative to xAy imply that B ěe A? No!

The sets for which this is true were called PA bounded in an upcoming
paper of Ganchev, Kalimullin, M., Soskova. They turned out to be a
familiar class:

Theorem (Franklin, Lempp, M., Schweber, Soskova)
As set A Ď ω has continuous degree if and only if xBy being PA
relative to xAy implies that B ěe A.
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Continuous degrees
Basic Facts (M. 2004).

§ The continuous degrees are the degrees of points in computable
metric spaces.

§ They properly extend the Turing degrees (which are the degrees
of points in 2ω, ωω, and R), and properly embed into the
enumeration degrees in a natural way.

§ Every continuous degree contains a point from r0, 1sω (the
Hilbert cube) and a point from Cr0, 1s (hence the name).

Instead of delving into the necessary computable analysis to define
the continuous degrees properly, let’s skip to some nice
characterizations inside the enumeration degrees.

Definition (Andrews, Igusa, M., Soskova)
A Ď ω is codable if there is a nonempty Π0

1xAy class P such that every
X P P enumerates A. If there is a c.e. operator W such that A “WX

for every X P P , then A is uniformly codable.
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Codability

Definition. A Ď ω is codable if there is a nonempty Π0
1xAy class P

such that every X P P enumerates A.

Theorem (Andrews, Igusa, M., Soskova)
The following are equivalent for A Ď ω:

§ A has continuous enumeration degree,
§ A is (uniformly) codable,
§ A has almost total enumeration degree: whenever b ę degepAq is
total, degepAq _ b is also total.

Clearly, if A is codable, then whenever xBy is PA relative to xAy, we
have B ěe A. We have already admitted to the converse:

Theorem (Franklin, Lempp, M., Schweber, Soskova)
As set A Ď ω has continuous degree if and only if xBy being PA
relative to xAy implies that B ěe A.
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Aside: the nontotal continuous degrees

As we’ve said, the continuous degrees properly extend the Turing
degrees. This is an essentially topological fact:

Remark. The fact that the Hilbert cube is not a countable union of
subspaces of Cantor space is easily proved from the fact that there are
nontotal continuous degrees in every cone, and visa versa (Kihara &
Pauly and Mathieu Hoyrup).

There is also a nice connection to Scott ideals and PA degrees:

Theorem (M. 2004)

1. I Ď Ppωq is a countable Scott ideal if and only if there is a set A
of nontotal continuous degree such that I “ tX : X ‘X ďe Au.

2. X is PA relative to Y if and only if there is a set A of nontotal
continuous degree such that Y ‘ Y ďe A ď X ‘X.

Does this mean that the nontotal continuous degrees are related to
the xselfy-PA degrees? No!
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How does everything relate so far?

We will see that the xselfy-PA degrees are disjoint from the
continuous degrees. So we have something like:
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Universal Π0
1xAy classes

(c) Must there be a nonempty Π0
1xAy class P such that every B P P

is PA relative to xAy, i.e., a “universal” Π0
1xAy class? No!

Question
For which enumeration oracles A is there a universal Π0

1xAy class?

We have several partial results.
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Universal Π0
1xAy classes

Proposition (Ganchev, Kalimullin, M., Soskova)
If A Ď ω has continuous degree, then there is a universal Π0

1xAy class.

Proof. Assume that the codability of A is witnessed by the
nonempty Π0

1xAy class P . Consider the nonempty Π0
1xAy class

Q “ tX ‘ Y : X P P and Y is DNC2 relative to Xu.

Note that B P Q implies that B is PA relative to some X P P . But
A ďe X ‘X, so B is PA relative to xAy.

Proposition (Ganchev, Kalimullin, M., Soskova)
If A Ď ω is xselfy-PA, then there is no universal Π0

1xAy class.

Corollary (M., Soskova)
The xselfy-PA degrees are disjoint from the continuous degrees.

18 / 26



Universal Π0
1xAy classes. . . or the lack thereof

Proposition (Ganchev, Kalimullin, M., Soskova)
If A Ď ω is xselfy-PA, then there is no universal Π0

1xAy class.

Proof. If there were a universal Π0
1xAy class P , then there would be

an X P P such that X ‘X ďe A and X is PA relative to xAy. In that
case, X would be PA relative to every Y such that Y ‘ Y ďe A. In
particular, X would be PA relative to X, which is impossible.

Actually, these are the only enumeration degrees we know of without
a universal class.

Open Question
If A Ď ω is not xselfy-PA, must it have a universal class?

We suspect that the answer is no!
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Low for PA

We (Franklin, Lempp, M., Schweber, Soskova) do have another source
of enumeration degrees with universal classes.

Definition. An enumeration oracle xAy is low for PA if every PA
degree is PA relative to xAy. I.e., whenever X has PA degree and P is
a nonempty Π0

1xAy class, there is a Y P P such that X ěT Y .

Proposition. Assume that xAy is low for PA.
(i) A is c.e. or has has quasiminimal enumeraion degree.
(ii) DNC2 is a universal Π0

1xAy class.

Proof. (ii) is obvious. To see (i), assume that A ěe Z ‘ Z, where Z
is not computable. Then tZu is a Π0

1xAy class. Take any PA degree X
that does not compute Z. Then X does not compute any member of
tZu, so xAy is not low for PA.

Theorem. xAy is low for PA if and only if whenever P is a nonempty
Π0

1xAy class, there is a nonempty Π0
1 subclass Q Ď P .
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Low for PA

Proposition. If A is 1-generic, then xAy is low for PA.

Proof. Let P xAy be a nonempty Π0
1xAy class. We claim that there is

a prefix σ ă A such that P xσ1ωy is nonempty. If so, then Q “ P xσ1ωy
is a nonempty Π0

1 class and Q Ď P xAy.
So assume that A has no such prefix. Consider the c.e. set of strings
W “ tτ P 2ăω : P xτy “ Hu. Because P xAy is nonempty, there is no
prefix of A in W . However, by assumption, every σ ă A can be
extended to a string σ1m PW . So W is dense along A but contains
no prefix of A, contradicting 1-genericity of A.

Not every quasiminimal degree is low for PA. Lagemann showed that
sufficiently random enumeration oracles are quasiminimal. However:

Proposition. If A is Martin-Löf random, then xAy is not low for PA.

Open Question. If A is sufficiently random, is there necessarily a
universal Π0

1xAy class?
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How do things relate now?

No quasiminimal degree is continuous, so our picture looks something
like this. But as mentioned above, the indicated region may be empty.
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Case Study: Relativizing the Jump



What is the enumeration jump?

In the Turing degrees, the jump X 1 can be viewed as the uniform join
of all X-c.e. sets. Let’s relativize this to an enumeration oracle.

Definition
Let KA “

À

ePω ΓexAy, where Γe is the eth enumeration operator.

In other words, KA is the uniform join of the sets that are ďe A. Is
this a good analogue of the jump? No!

It is easy to see that A ”e KA.

What went wrong? The proof that X 1 ęT X uses that the
complement X 1 is not X-c.e., so maybe the better analogue is:

Definition
The skip of A Ď ω is the set A♦ “ KA.

Now we have A♦ ęe A, for all A Ď ω.
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What is the enumeration jump?

The skip agrees with the Turing jump on the total degrees. Moreover,
it has some of the properties that we expect from the jump. For
example (Andrews, Ganchev, Kuyper, Lempp, M., A. Soskova, and
M. Soskova 2019):

§ A ďe B if and only if A♦ ď1 B
♦.

§ Degree Invariance: If A ”e B, then A♦ ”e B
♦.

§ Skip Inversion: For every S ěe H♦, there is a set A such that
A♦ ”e S.

However, the skip is not the accepted enumeration jump:

Definition (Cooper 1984)
The enumeration jump of A Ď ω is the set JepAq “ KA ‘KA.

Cooper intended to use the skip as the enumeration jump until his
student McEvoy noted that it isn’t always the case that A♦ ěe A.
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The cototal degrees
In fact, it follows from the Knaster–Tarski fixed point theorem that
there is a set A such that A♦♦ “ A.

Question. When is it the case that A♦ ěe A (equiv., A♦ ”e JepAq)?

Theorem. The following are equivalent for an enumeration degree a:

§ a♦ ěe a,

§ a contains a cototal set A, i.e., A ďe A,

§ (McCarthy 2018) a contains the complement of a maximal
antichain in ωăω,

§ (McCarthy 2018) a contains the language of a minimal subshift,

§ (Kihara, Ng, and Pauly) a is the degree of a point in a
computable Gδ topological space.

We call these degrees cototal. They were studied extensively in
(AGKLMSS 2019).
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One more picture

We know where the cototal degrees fit into our picture. Note that
neither cototality nor having a universal Π0

1x¨y class implies the other.
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Thank you!


