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We consider properties of large cardinals which potentially can
hold for "small cardinals".

Typically these are "compactness" or "reflection properties"
which automatically holds for cardinals like weakly compact,
strongly compact and supercompact
Few examples for properties of a regular cardinal κ

1. The tree property: Every κ tree has a cofinal branch.
2. Stationary set reflection: Is S ⊆ κ is a stationary in κ then

there is α < κ such that S ∩ α is stationary in α.
Variations of this principle is when we make some
assuption on the stationary set S like that cf(α) = ω for
α ∈ S.

3. "Weak Chang’s conjecture" : If A = 〈κ,R, . . .〉 is a structure
in a countable language such that R is a unary predicate
such that |R| < κ then there is an elementary substructure
B ≺ A such that |B| < κ and |R ∩ B| < κ.
Variation of this principle puts further conditions on |B|
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Some more combinatorial and algebraic examples

1. Chang’s conjecture: (κ, λ)⇒ (κ′, λ′) if for very structure
(in a countable language ) A = 〈κ, λ, . . .〉 has an
elementary substructure B ≺ A such that |B| = κ′ and
|B ∩ λ| = λ′

We shall mainly interested in Chang’s conjectures of the
form (κ+, κ)⇒ (λ+, λ). Note that if ℵα+1 for countable α
satisfies the weak Chang’s conjecture, then for some
β < α (ℵα+1,ℵα)⇒ (ℵβ+1,ℵβ).

2. The existence of transversals : Let F be a family of
countable sets where |F| = κ such that every subfamily
has a transversal (-"a one to one choice function") then F
has a transversal

3. Compactness for freeness of groups : Let G be a (an
Abelian) group |G| = κ such that every subgroup of
smallest cardinality is free, then G is free
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A topological example

Compactness for a topological space being collection-wise
Hausdorff: A topological space X is collection-wise Hausdorff if
every discrete subset can be separated . Namely if Y ⊆ X is
discrete , then there is a mutually disjoint family of open sets
{y |y ∈ Y} such that for y ∈ Y y ∈ Uy . Suppose that X is a
topological space of cardinality κ such that every subspace of
cardinality < κ is collection-wise Hausdorff . Is X
collection-wise Hausdorff? In order to avoid trivial counter
example we need to assume that X is "locally small". e.g.
"Every point has a neighbourhood of cardinality whose
successor is less than κ.



If the cardinal κ is weakly compact then it has all the above
properties

If V = L then each of the above compactness properties for the
caridnal κ is equivalent to κ being weakly compact.(Except the
weak Chang’s conjecture , which trivially holds for inaccessible.)

Question
Which of the above properties can consistently hold for "small"
cardinals ?
What combinations of these compactness properties can hold
st a small cardinal ?
What is the consistency strength of the property holding at a
small cardinal ?
Is the compactness property survives "small" forcing extension?
In this talk we are mainly interested in the case of successors
of singulars . In particular ℵω+1 and it neighbours.
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Implications between compactness properties

Theorem
Let κ be a regular cardinal. Suppose that there a non reflecting
stationary set S ⊆ κ such that for α ∈ S cf(α) = ω. Then:

1. There is a family of countable sets F of cardinality κ such
that every smaller cardinality subfamily has a transversal,
but F fails to have a transversal.

2. There is a (an Abelian) group G of cardinality κ such that
every subgroup of smaller cardinality is free but G is not
free.

3. There is a topological space of cardinality κ , which is
locally countable ("every point has a countable
neighbourhood") such that every subspace of smaller
cardinality is collection-wise Hausdorff but the space is not
collection-wise Hausdorff.
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Theorem
Let κ = λ+ where �λ holds , then κ fails to have any of the
compactness properties listed above.

Hence if κ = λ+ where λ is singular implies that �λ fails. Hence
the consistency strength of a successor of singular having any
of the above compactness properties is rather large.
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How compact can ℵω+1 be ?

The good news

Theorem
It is consistent (assuming the consistency of ω many
supercompacts) that every stationary subset of ℵω+1 reflects.

Theorem (Levinski-M.-Shelah, Hayut)
It is consistent from some large cardinals that the Chang’s
conjecture (ℵω+1,ℵω)⇒ (ℵ1,ℵ0).
The original Levinski-M.-Shelah proof uses cardinals around
huge cardinals. Hayut got the result from one supercompact.
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Theorem (M.-Shelah, Neeman- Sinapova)
It is consistent assuming the consistency of some very large
cardinal that ℵω+1 has the tree property.

The original M.-Shelah original version uses cardinals around
huge cardinals. The Neeman-Sinapova version uses ω many
supercompacts.

Theorem (Shelah)
Assuming he consistency of supercompact cardinal it is
consistent that every topological space X of cardinality ℵω+1
which is locally countable, if every subspace of smaller
cardinality is collection wise Hausdorff, then X is collection wise
Hausdorff.
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The compactness of ℵω+1
The bad news

Theorem (M.-Shelah)

The existence of transversalis There is a family of countable
sets of cardinality ℵω+1 such that every smaller
cardinality subfamily has a transversal , but the
whole family fails to have a transversal.

Freeness of groups There is a (an Abelian) group such that
every smaller cardinality subgroup is free, but the
whole group is not free.

Collection wise Hausdorff There is a topological space of
cardinality ℵω+1 which is locally of cardinality ≤ ℵ1
such every smaller cardinality subspace is
collection wise Hausdorff but the whole space is
not collection wise Hausdorff.

The same is true for all ℵω·n+1 for all n < ω.
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Combining stationary reflection and Chang’s
conjecture

Definition (M.-Shelah)
Let κ = λ+ where λ is singular. We say that "Delta" reflection
holds at δ , denoted by ∆λ, if for every structure (in a countable
language) A = 〈κ,<,S, λ,R0 . . .〉 such that S is a stationary
subset of κ and for every δ < λ there is an elementary
substructure B ≺ A such that |B| < κ,δ ⊆ B |B ∩ λ| < |B| and
S ∩ sup(B) is stationary in sup(B).

Note that ∆λ is preserved by forcings of size less than λ.
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Theorem (M.-Shelah)
Let κ = λ+ where λ is singular such that ∆λ holds. Then
trivially κ satisfies stationary reflection and the weak Chang’s
conjecture . But also

:
1. For every δ < λ and a family F of cardinality κ , made up of

sets whose cardinality is ≤ δ, if every subfamily of F of
smaller cardinality has a transversal, then F has a
transversal .

2. If G is a (an Abelian) group |G| = κ, every subgroup of
smaller cardinality is free then G is free.

3. For every δ < λ and a topological space of cardinality κ
such that it is locally of cardinality ≤ δ , if X is collection
wise Hausdorff, then X is collection wise Hausdorff.

Unfortunately ∆λ does not imply the tree property at λ+. (M.- L.
Fontanella)
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ℵω2+1 is compactness friendly

Theorem (M+Shelah)
Assuming the consistency of ω supercompacts it is consistent
that ∆ℵ

ω2 holds. So in the resulting model ℵω2+1 is compact for
all the properties we considered . except possibly the tree
property.

Theorem (Fontanella+M.)
Assuming the consistency of ω many supercompacts it is
consistent that ∆ℵ

ω2 together with the tree property at ℵω2+1.
So in the resulting model ℵω2+1 has all the compactness
properties we considered (and many more) .
A slight modification of the above construction gets a model in
which ∆ℵ

ω2 holds but ℵω2+1 fails the tree property.(So ∆ℵ
ω2 and

the tree property are independent of each other.)
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Why is ℵω2+1 different from ℵω+1 ?

Definition
Let λ be a singular cardinal and µ = cf(λ). A λ+ scale is a
sequence 〈κi |i < µ〉 of regular cardinals less than λ , cofinal in
λ and a sequence 〈gα|α < λ+〉 which is increasing and cofinal
in 〈

∏
i<µ κi ,-〉 where f - g iff {i < µ|f (i) > g(i)} is bounded in

µ.

Theorem (Shelah)
For every singular cardinal λ there exists a λ+ scale.
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The good and the bad

Definition
Let λ be a singular cardinal and ~g = 〈gα|α < λ+〉 a λ+ scale.
D ⊆ ~g is disjointifable if there is function d : D → µ such that for
all α < β in D and i > max(d(α),d(β)) gα(i) < gβ(i).

Definition
For a λ+ scale ~g = 〈gα||α < λ+〉 , α < λ is a good point of ~g if
there is D ⊆ α which is disjointifable.
Note that if α is good for the scale ~g and cf(α) > ω then the set
of β < α which are good for ~g contains a closed unbounded
subsets of α.

Definition
A λ+ scale ~g is good if the set of α < λ+ which is good for ~g
contains a closed unbounded subset of λ+.
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Good scales are bad for compactness

Theorem
Let ~g be a good λ+ scale where λ is singular and cf(λ) = ω.
Then;

1. The weak Chang’s conjecture fails for λ+.

2. There is a family F , |F| = λ+ of countable sets such that
every subfamily of smaller cardinality has a transversal but
F fails to have a transversal.

3. There is a (an Abelian) group G of cardinality λ+ such that
every smaller cardinality subgroup is free but G is not free.

4. There is a topological space X which is locally of
cardinality ≤ ℵ1 such that every smaller cardinality
subspace is collection wise Hausdorff but X fails to be
collection wise Hausdorff.
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Finer analysis of badness

Definition
Let ~g be a λ+ scale and let η < λ be regular. ~g is η- good if the
set of α < λ+, cf(α) = η such that α is NOT good for ~g is non
stationary in λ+.

Lemma
Let ~g be a λ+ which η- good for some regular η < λ. Then
there is a structure A = 〈λ+, λ,R0, . . .〉 such that for every
B ≺ A where |B| < λ then either |B ∩ λ| = |B| or cf(sup(B)) 6= η.
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Theorem (M.+Shelah)
Let ~g be λ+ scale which is ρ good for every regular ρ, η ≤ ρ < λ
for some then

1. There is a family F , |F| = λ+ of sets of whose cardinality is
≤ max(cf(λ)+, η) such that every smaller cardinality has a
transversal but F fails to have a transversal.

2. There is a topological space X whose cardinality is λ+

which locally of cardinality ≤ max(cf(λ)+, η) such that
every smaller cardinality subspace is collection wise
Hausdorff but X is not collection wise Hausdorff.

In the above theorem, if ≤ max(cf(λ)+, η) < ℵω then we can
assume that F is made up of countable sets , that the space X
is locally of cardinality ≤ ω1 and that there is a (an Abelian )
group G of cardinality λ+ every smaller cardinality subgroup is
free , while G is not free.
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Theorem
Let ~g be ℵω+1 scale . Then every α < ℵω+1 such that
cf(α) ≥ ℵ4 is good for ~g.

Corollary
For every n ≥ 3 the Chang’s conjecture
(ℵω+1,ℵω)⇒ (ℵn+1,ℵn) is false.

Corollary (Shelah)
Suppose that every stationary subset of ℵω+1 reflects, then
every ℵω+1 scale is good.

Corollary
Every Chang’s conjecture for ℵω+1 is incompatible with
stationary reflection for ℵω+1.
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Is the tree property separates ℵω+1 from ℵω2+1

In all the models in which ℵω+1 has the tree property, no scale
is good. So in these models there is a non reflecting stationary
subset of ℵω+1.

Theorem (Shelah)
Let λ be a singular cardinal which violates the singular
cardinals hypothesis, namely 2cf(λ) < λ and λcf(λ) > λ+ . Then
there is a good λ+ scale.

Theorem (Sinapova)
Assuming the consistency of ω many supercompacts. It is
consistent that ℵω2+1 has the tree property, ℵω2 is strong limit
and 2ℵω2 > ℵω2+1. Hence ℵω2+1 has the tree property and it
caries a good scale.
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Conjecture
If ℵω+1 has the tree property then no ℵω+1 scale is good. In
particular , assuming that ℵω+ has the tree property , then it
satisfies the singular cardinals hypothesis and it fails stationary
reflection.

Compare with the fact that the tree property at ℵω2 is consistent
with ∆ℵ

ω2 . It is it is consistent with stationary reflection.
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The survival of the tree property under small forcing

Theorem (Hayut-M.)
Assuming the consistency of ω many supercompact cardinals
then

1. it is consistent to have a model in which ℵω+1 has the tree
property , but if we force with the Levy collapse of ω1 then
there is a special Aronszajn tree on ℵω+.

2. It is consistent that ℵω+1 has the tree property, and it
preserves the tree property under any σ closed forcing of
cardinality < ℵω+1

Theorem (Hayut-M.)
Assuming the consistency of ω many supercompact cardinals,
it is consistent to have a model in which ℵω2+1 has the tree
property and it preserves the tree property under any forcing
extension by a forcing of cardinality < ℵω2+1.
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Conclusion

Of our listed properties ℵω+1 can consistently have only the tree
property, a limited Chang’s conjecture and stationary reflection

.

Theorem (Hayut)
Assuming the consistency of one supercompact then it is
consistent that ℵω+1 have simultaneously the tree property and
the Chang’s conjecture (ℵω+1,ℵω)⇒ (ℵ1,ℵ0). Of course it can
not have simultaneously stationary reflection.
On the other hand ℵω2+1 can consistently have all our
compactness properties simultaneously (and much more)
ℵω2+1 is very different from ℵω+1
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