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Outline

Enumeration reducibility captures a natural relationship between sets of
natural numbers in which positive information about the first set is used to
produce positive information about the second set.

By identifying sets that are reducible to each other we obtain an algebraic
representation of this reducibility as a partial order: the structure of the
enumeration degrees De.

Motivation for the interest in this area comes from its nontrivial connections
to the study of the Turing degrees. In particular, there is a natural structure
preserving embedding of the Turing degrees in the enumeration degrees.

I. The first order theory of De and its fragments;
II. First order definability;
III. Automorphisms and automorphism bases.
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The enumeration degrees
Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A Ď ω is enumeration reducible to B Ď ω (A ďe B) if there is a
uniform way to compute an enumeration of A from an enumeration of B.
(Selman 1971 proved that the uniformity condition can be dropped.)

Definition
A ďe B if there is a c.e. set W such that

A “ tn : pDeq xn, ey PW and De Ď Bu,

where De is the eth finite set in a canonical enumeration.

The degree structure De induced by ďe is called the enumeration degrees. It is
an upper semi-lattice with a least element (the degree of all c.e. sets).

Note! Enumeration reducibility is a definable relation in second order
arithmetic Z2. Thus Z2 can interpret De.
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The main problem

The three parts of this talk address three aspects of the same problem:

Theorem (Slaman, Woodin 1986, S 2016)

The following are equivalent:
1 De is biinterpretable with second order arithmetic.
2 The definable relations in De are exactly the ones induced by degree

invariant definable relations in second order arithmetic.
3 De is a rigid structure.

Problem
Are these statements true or false?
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Part I: The first order theory of De

and its fragments
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The existential theory
To understand: “What existential sentences in the language of partial order
are true in De?”

we ask “What finite partial orders can be embedded in De?”.

The answer is “all”. All you need is an independent sequence: a sequence
tAiuiăω such that Ai ęe

À

j‰iAj . The columns of a 1-generic set satisfy this.

And so the D-ThpDeq is decidable.

Theorem (Slaman, Sorbi 2014)
Every countable partial order can be embedded below any non-zero element of
De.

And so the D-ThpDeq is decidable.

Note! This generalizes:

Theorem (Gutteridge 1971)
The enumeration degrees are downwards dense and so DT ı De.
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The two quantifier theory

Problem
Is the @D-theory of De decidable?

The problem of deciding the 2-quantifier theory is equivalent to the following:

Problem
We are given a finite lattice P and a partial orders Q0, . . . Qn Ě P . Does every
embedding of P extend to an embedding of one of the Qi?
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The algorithm for deciding D@-ThpDT q

In DT the problem is solved through the following:

Theorem (Lerman 1971)
Every finite lattice can be embedded into DT as an initial segment.

Suppose that P is a finite lattice and Q Ě P is a partial order extending
P .
The initial segment embedding of P can be extended to an embedding of
Q only if no element in Qr P is below any element of P .
Q also needs to respect least upper bounds if x P Qr P and u, v P P and
x ě u, v then x ě u_ v.

Theorem (Shore 1978; Lerman 1983)
That is the only obstacle.

The downward density of De makes this approach not applicable.
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Towards a solution
Theorem (Slaman, Calhoun 1996)
There are e-degrees a ă b such that the interval pa,bq is empty.

Theorem (Kent, Lewis-Pye, Sorbi 2012)
There are e-degrees a ă b such that b is a strong minimal cover of a: if x ă b
then x ď a.

Theorem (Lempp, Slaman, S.)
Every finite distributive lattice can be embedded as an interval ra,bs so that if
x ď b then x P ra,bs or x ď a.

Corollary
The D@D-theory of De is undecidable.
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The complexity of the full theory of De

Theorem (Slaman, Woodin 1997)
The theory of De is computably isomorphic to the theory of second order
arithmetic Z2:

there are algorithms that translate a formula ϕ in the language
of partial orders to a formula ψ in the language of second order arithmetic and
vise versa so that:

De |ù ϕ if and only if Z2 |ù ψ.

To translate ψ into ϕ they use their Coding Theorem:

Theorem
For every n, every countable n-ary relation on De can be uniformly defined
from finitely many parameters.

and prove that it is a definable property of finitely many parameters ~p that
they code a model of pN,`,ˆ,ă, Cq where C is a unary predicate on N.
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The biinterpretability conjecture

Conjecture
The relation Bi, where Bip~p, cq holds when ~p codes a model of pN,`,ˆ,ă, Cq
and degepCq “ c, is first order definable in De.

Theorem (Slaman and Woodin 1987, S 2016)

There is a parameter g such that relation Bi is first order definable in De with
parameter g.

Equivalently,

Corollary
If R is an n-ary relation invariant under ”e and definable in Z2 then
R “ tpdegpA1q, . . .degepAnqq | Z2 |ù RpA1, . . . Anqu is definable in De with one
parameter g.
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Part II: First order definability
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The enumeration jump

Theorem (Shore, Slaman 1999)
The Turing jump is first order definable.

The proof relies on Slaman and Woodin’s work on the biinterpretability
conjecture for the Turing degrees.

Let KA “
À

e ΓepAq. Note that A ”e KA.

Definition
The enumeration jump of a set A is A1 “ KA ‘KA. The jump of a degree is
degepAq

1 “ degepA
1q.

Is the enumeration jump first order definable?
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The total enumeration degrees
Proposition. A ďT B iff A‘A is B-c.e. iff A‘A ďe B ‘B.

This suggests a natural embedding of the Turing degrees into the enumeration
degrees.

Proposition. The embedding ι : DT Ñ De, defined by

ιpdT pAqq “ depA‘Aq,

preserves the order and the least upper bound and even the jump.

Definition
A set A is total if A ěe A (or equivalently if A ”e A‘A). An enumeration
degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the set of
total enumeration degrees.

Are the total degrees first order definable?
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Semicomputable sets and natural definability

Jockusch introduced the semicomputable sets as left cuts in computable linear
orderings on ω .

Theorem (Jockusch 1968)
Every Turing degree contains a semicomputable set that is not c.e. or co-c.e.,
so every total degree can be represented as degepAq _ degepAq for such a set A.

Theorem (Arslanov, Cooper, Kalimullin 2003)
If A is semicomputable and not c.e. or co-c.e. then the degrees a “ degepAq
and ā “ dege pAq are a robust minimal pair:

p@x P Deqrpa_ xq ^ pā_ xq “ xs.
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and ā “ dege pAq are a robust minimal pair:

p@x P Deqrpa_ xq ^ pā_ xq “ xs.
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Definability of the enumeration jump

Kalimullin studied pairs of enumeration degrees that form relative robust
minimal pairs.

Theorem (Kalimullin 2003)
The enumeration jump is first order definable.

A definition with unrelativized robust minimal pairs is as follows:

Theorem (Ganchev, S 2012)
x1 is the largest degree above x which can be represented as a_ b, where
ta,bu is a robust minimal pair with a ď x.
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A definable copy of the Turing degrees

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The pairs of degrees of a semicomputable set and its complement are first
order definable in De. They are maximal robust minimal pairs.

The total enumeration degrees are first order definable

Note! The characterization of the complexity of ThpDeq and Biinterpretability
with parameters for De now follow from the corresponding theorems for DT .

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
For total degrees a and x, a is c.e. in x if and only if a is the join of a
semicomputable pair with one side bounded by x.
The image of the relation “c.e. in” on Turing degrees is first order definable in
De.
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The continuous degrees
Definition (Lacombe 1957)
A computable metric space is a metric space M together with a countable
dense sequence QM “ tqMn unPω on which the metric is computable, i.e. there
is a computable function that maps a pairs of indices i, j and a precision
ε P Q` to a rational that is within ε of dMpqi, qjq.

Examples:. 2ω, ωω, R, Cr0, 1s, and Hilbert cube r0, 1sω.

Definition
λ : Q` Ñ ω is a name of a point x PM if for all rationals ε ą 0 we have
dMpx, q

M
λpεqq ă ε.

Definition (Miller 2004)
If x and y are members of (possibly different) computable metric spaces, then
x ďr y if there is a uniform way to compute a name for x from a name for y.

This reducibility induces the continuous degrees.
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The continuous degrees
Theorem (Miller 2004)
Every continuous degree contains a point from r0, 1sω and a point from Cr0, 1s.

For α P r0, 1sω, let
Cα “

à

iPω

tq P Q | q ă αpiqu ‘ tq P Q | q ą αpiqu.

Observation. Enumerating Cα is exactly as hard as computing a name for
α. So α ÞÑ Cα induces an embedding of the continuous degrees into the
enumeration degrees.
Elements of 2ω, ωω, and R are mapped onto the total degree of their least
Turing degree name (i.e., their Turing degree).

Theorem (Miller 2004)
There is a nontotal continuous degree.

Every known proof of this result uses nontrivial topological facts: Brouwer’s
fixed point theorem for multivalued functions on an infinite dimensional space,
or Sperner’s lemma, or results from topological dimension theory.
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Topology realized as a structural property
Theorem (Andrews, Igusa, Miller, S.)
An enumeration degree a is continuous if and only if it is almost total: if x ę a
and x is total then a_ x is total.

The continuous degrees are definable in De.

Definition
A Turing degree a is PA

if a computes a complete extension of Peano Arithmetic, or equivalently
if a computes a path in every infinite computable tree.

The degree a is PA above b if a computes a path in every infinite
b-computable tree.

Theorem (Miller 2004)
For total degrees a is PA above b if and only if there is a nontotal continuous
degree c such that b ă c ă a.
The image of the relation “PA above” is first order definable in De.
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The cototal enumeration degrees
Definition
A set A is cototal if A ďe A.

A degree is cototal if it contains a cototal set.

The cototal degrees contain the continuous degrees. Not every e-degree is
cototal.

The cototal enumeration degrees are characterized as:
1 The degrees of complements of maximal independent sets in computable

graphs by AGKLMSS 2019.
2 The degrees of complements of maximal antichains in ωăω by McCarthy

2018.
3 The degrees of languages of minimal subshifts by McCarthy 2018.
4 The degrees of sets with good approximations by Miller and S 2018.
5 The degrees of points in computable Gδ topological spaces by Kihara, Ng,

and Pauly 2019.

Problem
Are the cototal degrees first order definable in De?
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Topological classification of classes of e-degrees
Definition (Kihara, Pauly 2018)
A represented space is a pair of a second countable topological space X and
listing of an open basis BX “ tBiuiăω.

A name for a point x P X is an enumeration of the set Nx “ ti | x P Biu.
For x, y P X, say that x ď y if every name for y (uniformly) computes a name
for x.

Thus a represented space X gives rise to a class of e-degrees DX Ă De.

Examples:.
D2ω “ DR is the total enumeration degrees.
Dr0,1sω is the continuous degrees.
DS8 “ De, where S is the Sierpinski topology tH, t1u, t0, 1uu.
DRă , where Ră is the real line with topology generated by tpq,8quqPQ, is
exactly the semicomputable degrees.

Kihara, Ng, and Pauly 2019 investigate DX , where X is the ω-power of the:
cofinite topology on ω, telophase space, double origin space, quasi-Polish Roy
space, irregular lattice space.
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Part III: Automorphisms

and automorphism bases

19 / 25



Slaman and Woodin’s automorphism analysis

Theorem (Slaman, Woodin 1986)
The Turing degrees have at most countably many automorphisms.

There is a single degree g ď 0p5q that is an automorphism base for DT : if π is
an automorphism such that πpgq “ g then π “ id.
Relations on DT induced by definable relations in Z2 are first order definable
in DT with such a parameter g.
Relations on DT induced by definable relations in Z2 that are furthermore
invariant under automorphism are first order definable in DT (without
parameters).

Theorem (Selman 1971)
For enumeration degrees a,b: a ď b if and only if every total degree above b
is above a.
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Implications for the e-degrees

Corollary
The total enumeration degrees form a definable automorphism base for De.

Every nontrivial automorphism of De gives rise to a unique non-trivial
automorphism of DT .
This automorphism preserves the relations “c.e. in” and “PA above”.
De has at most countably many automorphisms.

A single total degree below 0
p5q
e is an automorphism base of De.

Problem
Does every automorphism of DT extend to an automorphism of De?

A positive answer would imply the first order definability (without
parameters) of the relations “c.e. in” and “PA above” in DT .
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Local structure
Definition
The local structure of the enumeration degrees is the interval Depď 01eq
consisting of all Σ0

2 enumeration degrees.

1 Cooper 1984 proved that this is a dense structure.
2 Bianchini 2000 proved that you can embed every countable partial order

in any nonempty interval.
3 Kent 2005 showed that the 3-quantifier theory is undecidable.

Problem
Is the 2-quantifier theory of Depď 01eq decidable?

4 Ganchev, S 2012 showed that ThpDepď 01eqq is computably isomorphic to
the theory of first order arithmetic.

5 Ganchev, S 2012, 2018 showed that many classes if Σ0
2 degrees are

definable in Depď 01eq including the total degrees, all levels of the jump
hierarchy: the lown and highn degrees for n ě 1.
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Biinterpretability for the local structure

Fix an effective listing of all Σ0
2 sets tUeueăω.

Problem
The Biinterpretability conjecture for the local structure is that in De there is a
definable coded model of first order arithmetic M “ pNM , 0M,`,ˆ,ăq and a
definable function ϕ : NM Ñ Dpď 01eq such that ϕpeMq “ degepUeq.
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Local structure determines global structure

Theorem (Slaman, Woodin 1986)
There is an indexing of the c.e. Turing degrees that is definable from ∆0

2

parameters in the local structure DT pď 01T q.

Slaman and S start with the result above (transferred to De via the
embedding ι).

Every indexing of the image of the c.e. Turing degrees can be extended to
the image of the ∆0

2 Turing degrees. (Uses the local definability of the
total and of the low enumeration degrees).
Every indexing of the image of the ∆0

2 Turing degrees can be extended to
an indexing of the image of the degrees that are c.e. in and above some
∆0

2 Turing degree. (Uses the definability of the enumeration jump and the
relation “c.e. in”).
Every such indexing can be extended to an indexing of the image of the
Turing degrees below 02e.
And now we can iterate...
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Local structure determines global structure
Theorem (Slaman, S 2017)
There is a finite set of ∆0

2 enumeration degrees that is an automorphism base
for De.

Theorem (Slaman, S 2017)
If De has a nontrivial automorphism then so does:

The local structure Depď 01eq.
The structure of the ∆0

2 Turing degrees DT pď 01T q.
The structure of the c.e. Turing degrees.

Problem
Does an automorphism of any of these structures extend to an automorphism
of De?
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Thank you!


