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Motivation

It all started with this guy...

Theorem (Ramsey’s theorem)

Let n = 1. For each coloration of [w]" in a finite number of color,
there exists a set X € [w]“ such that each element of [X]" has the
same color ([ X]" is said to be monochromatic).
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Motivation

Ramsey Theory

A general question

Suppose we have some mathematical structure that is then cut into
finitely many pieces. How big must the original structure be in order
to ensure that at least one of the pieces has a given interesting
property ?

Examples :
@ Van der Waerden's theorem
@ Hindman's theorem

o ..
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Motivation

Example (Van der Waerden's theorem)

For any given ¢ and n, there is a number w(c, n), such that if w(c, n)
consecutive numbers are colored with ¢ different colors, then it must
contain an arithmetic progression of length n whose elements all have
the same color.

We know that :

Example (Hindmam'’s theorem)

If we color the natural numbers with finitely many colors, there must
exists a monochromatic infinite set closed by finite sums.
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Partition regularity

Theorems in Ramsey theory often assert, in their stronger form,
that certain classes are partition regular :

Definition (Partition regularity)

A partition regular class is a collection of sets £ < 2 such that :
Q@ L is not empty

Q@ If XeLand Ygu---uU Yy 2 X, then there is i < k such that
Yie L
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Partition regularity

The following classes are partition regular :

Classical combinatorial results :
@ The class of infinite sets
@ The class of sets with positive upper density

© The class of sets containing arbitrarily long arithmetic
progressions (Van der Waerden's theorem)

@ The class of sets containing an infinite set closed by finite sum
(Hindman's theorem)

.. and new type of results involving computability :

@ Given X non-computable, the class sets containing an infinite
set which does not compute X (Dzhafarov and Jockusch)
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Ramsey’s theorem and reverse mathematics

Theorem (Dzhafarov and Jockusch)

Given X non-computable, Given A° U Al = w, there exists G € [Ao]“’ V]
[A]“ such that G does not compute X.

This theorem comes from Reverse mathematics :

What is the computational strength of Ramsey's theorem ? I

that is, given a computable coloring of say [w]Q, must all monochromatic
sets have a specific computational power ?

Theorem (Seetapun)

For any non-computable set X and any computable coloring of [w]?, there
is an infinite monochromatic set which does not compute X.

v

Theorem (Jockusch)

There exists a computable coloring of [w]3, every solution of which com-
putes @I.
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Background of RT3 vs SRT}

Modern approach of Seetapun’s theorem (Cholak, Jockusch, Slaman) :

Definition

A set C is {R,}nc.-cohesive if C <* R, or C =* R, for every n.

Definition

A coloring ¢ : w? — {0,1} is stable if Vx limyec c(x, y) exists.

@ Given a computable coloring ¢ : w? — {0,1},let R, = {y : c(n,y) =
0}. Let C be {R,}new-cohesive. Then c restricted to C is stable.

@ Let c be a stable coloring. Let A, be the AJ(c) set defined as A.(x) =
limy, c(x, y). An infinite subset of A. or of A. can be used to compute
a solution to c.
— Find a cohesive set C (cohesive for the recursive sets) which does not
compute X and use Dzhafarov and Jockusch relative to C with Aq..
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Background of RT3 vs SRT}

Definition

RT3 : Any coloring ¢ : w? — {0,1} admits an infinite homogeneous set.

The key idea of Cholak, Jockusch and Slaman is to split RT2 into simpler
principles (original motivation was to find a lows solution to RT3) :

Definition
COH : For any sequence of sets {R,}nc. there is an {R,}ne,-cohesive set.

Definition

SRT3 : Any stable coloring admits a monochromatic set.
< (over RCAg) B
D3 : For any AJ set A, there is a set X € [A]“ U [A]¥.

We have that RT3 is equivalent to SRTZ + COH over RCA,.
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The question

Theorem (Cholak, Jockusch and Slaman)
RT% “RCA, STR% + COH.

Theorem (Hirschfeldt, Jockusch, Kjoss-Hanssen, Lempp and Slaman)
RT3 is strictly stronger than COH over RCA,.

Do we have that RT3 is strictly stronger than SRT3 over RCA ?

<>

Do we have that SRT3 implies COH over RCA ?

Theorem (Chong, Slaman, Yang)

RT3 is strictly stronger than SRT% over RCAy.
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The question

Theorem (Chong, Slaman, Yang)
SRT3 does not imply COH over RCAy.

Proposition

X" is PA(') iff X computes a p-cohesive set : a set which is cohesive
for primitive recursive sets.
— A p-cohesive set cannot be low.

The separation is done by building a non-standard models of SRT3+RCAq
containing only sets which are low within the model. The model has to be
non-standard by the following :

Theorem (Downey, Hirschfeldt, Lempp and Solomon)

There is a AS set A with no infinite low set in it or in its complement.

The proof of DHLS uses ¥3-induction.
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Our goal

Our goal

Show that for any A set A, there is an infinite set G in A or in A
such that G’ is not PA(()").

If the construction relativizes (every construction does) we can build
an w-model of RCA( + D3 = RCA( + SRT% which contains no p-
cohesive set and thus which is not a model of COH.

Steps to come :

@ We explain how to use Mathias forcing to build non-cohesive
and non PA sets (warm up).

@ We explain how to use Mathias forcing to control the truth of
Zg statements.

© We sketch the actual proof.
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g Section 2
Partition regular classes :
A simple proof of Liu's theorem
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Largeness and partition regularity

Definition (Largeness)

A largeness class is a collection of sets £ < 2“ such that :
@ L isupward closed : If X e L and X € Y, then Y e L
Q If You:---U Yy 2w, then there is i < k such that Y; e £
Q If X € L then |[X| =2

A

Definition (Partition regularity)

A partition regular class is a collection of sets £ < 2% such that :
@ L is a largeness class

Q@ If XeLand Ygu---u Yy 2 X, then there is i < k such that
Yie Ll
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Generalities

Proposition
A partition regular class £ contains only infinite sets.

Proposition

Let £ be a partition regular class. Then L is closed by finite change
of its elements. Furthermore if £ is measurable it has measure 1.

Proof sketch :

L contains only infinite set

— L is closed by finite change

— L has measure 0 or 1

— If £ has measure 0, sufficiently MLR Z and w — Z are not in £
— But Z or w — Z must be in L. Contradiction.

— L has measure 1
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Generalities

Proposition (Compactness for largeness classes)

Suppose {Ap}new is a collection of largeness classes with A,.1 S A,.

Thus (), An is a largeness class.

A

Proposition (Compactness for partition regular classes)

Suppose {£,} new is a collection of partition regular classes with £,11 S L,,.
Thus (), £n is partition regular.

hew

Proposition

| A

Let A be any set. Then A is a largeness class iff the set

L(A)={X€e2 : Vk¥Xpu---UX,2X 3i <k X;e A}

is a partition regular subclass of A (in which case it is the largest).

\
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M3 partition regular classes

Proposition

IfU is a X9 large class. Then L(U) is a NS partition regular class.

Proposition

IfU is a ¥9 upward closed class. Then predicate

U is large

' 10
is 5.

Fix k, the class of element :
{Yo@--~@yk . X§Y0®~'-®Yk/\Vi<k Y,¢U}

is a MY(X) class uniformly in X.
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Canonical MY partition regular classes

For any infinite set X we define Lx as the N3(X) partition regular
class of the sets that intersect X infinitely often.

| A\

Proposition

There is a ﬂg partition regular class £ such that Lx ¢ £ for any
X € [w]“.

v

The set is given by

L={X : Vk3n st. |X1,2|=nk}

Are there any other N9 partition regular classes ?




Partition regular classes
000000@00000000

Partition genericity

Definition
Let A € w be a largeness class. We say that X is partition generic
below A if for every 9 class U such that Anlf is large, X isin AnU.

If X is partition generic in 2¢ we simply say that X is partition
generic.

We have that w is partition-generic.

Definition
We say that X is bi-partition generic below A if X and w — X are
both partition-generic below A.

Note that every non-trivial partition regular class if of measure 1. It
follows that any Kurtz-random is bi-partition generic.
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The key lemma for partition genericity

The class of elements which are partition generic “below
something” is partition regular :

Let C be any set such that [ . Ue is large (each Ue is £9). Suppose
X is partition generic below () .- Ue. Let You--- U Yi 2 X. There
is a £9 class V such that V N (). Ue is large and some i < k such
that Y; is partition generic below V N () . Ue.

Suppose we have X9 classes V, € V,-1 € -+ € Vo with Y; ¢ V;
and Vi N (eecUe large. As X is partition generic we must have
X € L(Vh N [NeecUe) and then Y € L(Vn N[ )eee Ue) for some i.
Contradiction.
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A simple proof of Liu's theorem

Let P be the set of forcing conditions (o, X,U) where :
Q oS Awith X n{0,...,|0]} =T
Q U is a large Z(l) class

© X < Ais partition generic inside U
We have (o, Y, U) < (1,Z,V) if (6,Y) < (1,Z) and U = V.

Q (o, X,U) I-3n &(G, n) if In ®(o, n)
Q (o, X,U) IFVYn ®(G,n) if YnV1T € X ®(0 LU T,n)
Q (o, X,U)?—3n ®(G,n) if
UnN{Y : It Y —{0,...,|c|} 3n ®(c U T,n)} is large
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A simple proof of Liu's theorem

Suppose ¥n 3i € {0,1} p?— (G, n) |=i. Then there is g < p such that
g - ®(G,n) |= d,(n) for some n.

Let p = (0, X,U). Fix k € w. Let f : w — {0,1} be the computable
function which on n finds some i € {0,1} such that for every k-partition
You ---uU Yy 2 w there is 7 < Y; for some Y; € U such that
SlouT,n) =i

There must be some n such that f(n) = ®,(n). Thus for every k-
partition Yo u --- U Y there is 7 < Y; for some Y; € U such that
In (o u T, n) |=Py(n).

As this is true for every k theopenset V = {Y : Ind(cuT,n) |= ®,(n)}
is such that & NV is large. As X is partition generic in i/ we must have
X € U and thus some 7 € X such that 3n (o U T, n) |= d,(n).

(cuTt,X—={0,...,|lc uT|},U V) is a valid forcing extension of p
which satisfies the lemma.
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A simple proof of Liu's theorem

Suppose 3n Vi€ {0,1} p?- ®(G,n) |=i. Then there is g < p
such that q I- ®(G, n) 1 for some n.

Let p = (0, X,U). There is n € w and covers YO U - U Y 2 w,
Y(}u~~u Y,il D w such that

@ For all on eU, V1 < YJ-O we have ®(o u T, n) # 0.

@ For all le eU, V1 < le we have ®(c u T, n) # 1.
Let Yo u - --- U Y, 2 w be a refinement of {YJ-O : j < k} and

{Y}' : j < k}. Then for every j < / and for all 7 = Y; we have
Y; € U implies ®(c U T,n) 1.

There must be j < / and a large ¥ class V < U such that X n Y;
is partition generic in V.
(0, XY}, V) is a forcing extension of p which satisfies the theorem.
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A slight modification

Theorem (Liu, slightly enhanced)

Let £ is a N large class, If A is partition generic in L, then there
is a set G € [A]¥ such that G € L and G is not PA

We simply make sure that conditions (o, X,U) are such that
U N L is a large class. The proof relativizes

Theorem (Liu, relativized)

If Gy is not PA and L is a N3(Gy) large class, If A is partition
generic relative to Gy below L, then there is a set G € [A]“ such
that Gy € L and Gy @ Gy is not PA.

Partition generic relative to Gy means being in every ¥9(Go) large
class.
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How about a non-cohesive solution ?

Let XouX1UXo = w be three infinite computable sets. Let A°UA! =
w be partition generic sets. We first find Gy € [A°]* with Gg € Lx,
and Gg not PA. We now have two possibilities :
@ A is partition generic relative to Gy, somewhere below Lx, .
— We find Gy € [A%]“ with G; € Lx, and Gy @® G; not PA.
@ Al s partition generic relative to Gy, somewhere below Ly, .
— We find G; € [Al]¥ with G; € Lx, and Go ® G; not PA.
We start again with Gy € [A%]Y U [Al]¥ with G € Lx, and
Go ® G1 ® Gy not PA.

In any case we have G, U G; < A% or G, U G, < Al for iy # i
with Gj; U G, <7 Gy @ G1 @ G2 not PA and Gj, U Gj; not cohesive.
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Forcing in product space for non-cohesive solution

Definition (Largeness in product spaces)

A largeness class is a collection of sets £ < (2¥)" such that :

© L is upward closed on every component : If (X; : i <n)e L and
Xi <Y, then (Y; : i<n)eLl

Q If Yiou---UYix2wfori<n, then thereis f : n — k such that
(Yf(,-) : i<n)e£

Q If (X; : i <n)e L then |X;| = 2 for every i

A

Definition (Partition regularity in product spaces)
A partition regular class is a collection of sets £ < (2“)" such that :
@ L is a largeness class.

Q If(X;:i<n)e L and Yd'u---uY,fQX,-,thenthereisf:n—»k
such that (Yfi(i) ci<n) el
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Forcing in product space for non-cohesive solution

Let Xo U X1 U Xo 2 w be three infinite computable sets. Let
A% U Al be any set.

We must have (A, At A2) partition generic somewhere below
Lx, x Lx, x Lx,. Say ip = i1 = 0. We then have that (A% A?) is
partition generic somewhere below Lx, x Lx;.
We then use forcing condition (o, Yo, Y1,U) where :

Q@ Yo Aland i < A°

@ (Yo, Y1) is partition generic in U

Q@ U < Lx, x Lx, is a largeness class
Where (o, Yo, Y1,U) < (7,20, Z1,V) if :

Q (o,You Y1) <(0,Z0u Z1)

QuUCcYVY
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The non-high forcing

We shall show that for any set A, there is G € [A]“ U [A]* such that G is
not high, that'is, G’ 21+ &”.

Definition

Let B be non A('). Let P be the set of forcing conditions
p = (09,01, X, C) such that :

Q@ o, A

Q Bisnot AYF'®X®C)

© Uc = NoccUe is a M3(C) large partition regular class
© X is partition generic below U¢

We write pll for the condition (o, X, C). We define
(To,Tl, Y, D) < (0‘0,0’1,X, C) if (T,', Y) < (O’,’,X) and C < D.

We suppose in addition that for any such forcing condition we have that
X n A% and X n Al are partition generic inside Uc.
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Definition

Given a Ag formula ®.(G, n, m) we write (e, o, n) for an index of the
following upward closed ¥9 class :

{X : 3Irc X -{0,...,|o|} Im —®(0c U T, n, m)}

Definition

Let p = (09,01, X, C). Given a Ag formula ®.(G, n, m) we define :
Q@ Pl I-3nVm &.(G,n, m) if (0;, X) |- Ym ®.(G, n, m) for some n

@ pll |- VYn3Im =, (G, n, m) if for all n for all 7 € X we have
¢(e,o;uT,n) e C

| A

Definition

Let F < IP be a filter, so we have conditions
(09,09,...) = (0},01,...) = (03,0%,...) > in P. We write G for the
sequence 0¥ < o} <o < ...,
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Lemma (Truth lemma for ¥9)

Let p = (09,01, X, C). Suppose plil |- 3n Ym & (G, n,m) If F is
generic enough with p € F we have 3n VYm d)e(G]’}, n, m)

For some n, for all 7 < X and all m we have ®.(c; U T, n, m).
Then clearly 3n Vm CDe(G}, n, m).

Lemma (Extension lemma for M9)

Let p = (09,01, X, C). Suppose pl - Vn Im —®.(G,n, m). Let
q < p. with g = (19,71, Y, D). Then g\l |- ¥n 3m —®.(G, n, m)

For every 7 € X and every n we have ((o; uT,n) € C < D. We
have 77 = o; U T for some 7 < X. Then also forevery p 2 Y € X
we have ((oj U T,n) e D.



Controlling Z statements
0000@000000

Lemma (Truth lemma for M9)

Let p = (09,01, X, C). Suppose plil |- ¥n Im =& (G, n, m) If F
is generic enough with p € F we have Yn im ﬁcbe(G}'_-, n, m)

We shall show that for every n the set
{(7_077_1a Y7 D) : (Tia Y) = 3m _'(De(G7 n, m)}

is dense below p. If F is generic enough it has a condition in each
of these dense set and then Vn 3m —®.(G%, n, m)

Fix x. Let ¢ < p with ¢ = (79,71,Y,D). Then gll |-
¥n 3m —®.(G, n, m). It follows that (e, 7;,n) € D. Also X n A’ €
Up. It follows that there exists p € X n A’ such that Im =P (1 U
pyn,m). (1i—i, 70 p, X —{0,...,|77 U p|}, D) is a valid extension
of g for which (77U p, X —{0,...,|m U p[}) I Im =D (G, n, m).
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Definition (The forcing question)

Let p = (09,01, X, C). We define
p?=3InVm & (G, n,m) v In Ym &, (G, n, m) iff

vZ0 U Z' o X m Uc(eo’gou.,.’,,) N ﬂ Z/{((el,alur,n) NUc

7S 270 new TCZ! new

is not large

| \

Proposition

The forcing question is T0(X @ C @ ()

4

We have p?3n Vm &, (G, n,m) v 3In¥m &, (G, n, m) iff for every Z° L

Z! 2 X there exists a finite set F < C togther with 79, ..., 7K € Z° with
9 ..., 7 < ZY and ny, ..., nx such that the X9 class :

() Uetoromm 0 [\ Ueterororim) O UE

7'67”f T{,nf

is not large
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Suppose p?=3In VYm & (G, n,m) v 3n ¥Ym &, (G, n,m) Then there
exists ¢ < p and i € {0,1} such that ¢’ |- 3n Ym ®..(G,n, m)

We have for every Z° U Z! 2 X that there exists a finite set F < C
togther with 70, ... 7% < Z% with 70, ..., 7f = Z and ny, ..., nx such
that the X9 class :

V= ﬂ uC (e0,00ud,n) M ﬂ UC(61;0'1U71 NUF

T(])nl 7'1 sNi

is not large.

Take Z° = A% and Z! = Al. There must be a cover Yyu---uU Yx 2 w such
that Y; ¢ V for j < k. We can furthermore assume Yy u --- U Yy <7 @/.
There must be j < k such that Y; n X is partition generic inside Up for
some D = Cu{e}. In particular Y; n X € Ur and then there must be / < 2
with 7/ < A" and ny such that Y; 0 X ¢ Ue(e, o070 m)- Thus Vp cCYinX
we have Vm &, (o’ U 7/ U p, ny). It follows that (o1_;, 0" U 7!, Y; 0 X, D)
is a valid extension which satisfies the lemma.
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Proposition

Suppose p?t-3In Vm &g (G, n,m) v In Ym &, (G, n,m) Then
there exists g < p and i € {0,1} such that
gl I-Yn Im =&, (G, n,m)

The class Z° U Z! © X such that

ﬂ MC(EO#TOUT,”) N ﬂ Z/{C(e1,0'1u7',n) F\Z/[C

7€ 29 new 771 new

is large, is a non-empty N9(X @ C@® ) class. Take Z° U Z1 such
that B is not A?(ZO PZleCo Q),). Let D be C together with
((ep, 00T, n) for every T © Zy and every n and with {(e;, 01U, n)
for every 7 © Z; and every n. We have that Up is large. As X is
partition generic inside ¢ we must have that Z; n X is partition
generic inside Ug for some E = D u {e} and some i € {0,1}.

We have that (09,01,Z; n X, E) is a valid extension of p which
satisfies the lemma.
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Cone avoidance

Given p € P. Given (G, x,n, m) and ®., (G, x, n, m) the set
S={x: p?=3InVm &, (G, x,n,m) v InVm &, (G, x,n, m)}

is £9(p). As B is not £9(p) we have B # S. Find q < p such that
for some j € {0,1} :

O ¢ I-3nvm ¢, (G,x,n,m) for x ¢ B

@ or gl |- Vn 3Im —d. (G, x,n, m) for x € B.

Then by a pairing argument we must have :
@ GO c AP so that B is not £9((G?))
@ or G! < Al so that B is not X9((G1))).
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Non-high forcing : The degenerate case

Suppose now that we encounter p = (09,01, X, C) such that A’ n X is
not partition generic in Uc for i € {0,1}. Say i/ = 1. Then there must be
a large Y9 class U such that X is partition generic in U and X n Al ¢ U{.
We use forcing conditions (o, Y, C) with :

Q@ ocA
Q YCX
QUCQZ/{

The forcing question becomes

Definition (The forcing question)

Let p = (0, Y, C). We define p?—3n Vm &.(G, n, m) iff

VZ°uZ oY 3ie {01} YnZieUn () Ugeoorm nUc

T7CZ! new

is not large
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More cone avoiding forcing

The non-high forcing cannot be extended in a straightforward way to
control the truth of ¥ statement for n > 2.

For n = 3 on would need to use large classes for the truth of Z(l) statements,
together with large classes for the truth of ¥9 statements : the two could

be incompatible.
We can however bring non-trivial modification in order to show the

following :

Theorem (M., Patey)

If B is not A?(@(a)) for o < wsk, any set A sufficiently partition generic
(below something) contains an infinite subset G such that B is not
AY(G).

Theorem (M., Patey)

If B is not A}, any set A sufficiently partition generic (below something)
contains an infinite subset G such that B is not AY(G) (with in
particular wf = wk).
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How to attack the problem ?

We now suppose that A° U Al D w is Ag. Some obstacles prevent
us from considering arbitrary sets A : essentially the problem is that
members of a M9(()') class might all be PA(()).

The formula ®.(G’, n) |= i is a 3 formula 3n Vm ®¢(. (G, n, m).
Having A A9 we can ask the following Z9(()") question : Is the set

ﬂ MC(f(e,i),UUT,n)

TCA,new
not a largeness class?

If the answer is no for both i = 0 and i = 1 we have two largeness
classes Cy and C;. Each class C; can be used to force ®.(G’, n) # i.
The problem is the following : The class /¢, N Uc, need not to be
large. So we instead work with the product class Ug, x Uc,, so the
generic can take elements in both /¢, and Uc,.
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How to attack the problem ?

Suppose we now work within Uc, x Uc,. The next question to ask
is of the form :

VkVXgu--~uX,9QwVX&u‘--UXﬁgwﬂio,il<k
(X2, X1) e U, x U, AT = XD U XL st ...

(VR

If the answer is yes we continue with a large class £ < Uc¢, x Uc,.

Problem : (A%, A%) or (AL, Al) need to be partition generic in Uc, x
Uc, and then it may not belong to £. It may be that (A% Al) € £
or (A}, A%) € £. We need a product of three large classes, so that
being any two of them is enough.
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valuations

Definition (Liu)
@ A valuation is a partial finite function v € w — {0, 1}.
@ A valuation v is (f'-correct if Yn e domv v(n) = &,(0', n).

© Two valuations vi, v» are incompatible if vi(n) # va(n) for
some n € dom vy N dom v»

Theorem (Liu)

Let V be a Q)’—C.e. set of valuation. Either V' contains a @’—correct

valuation or for any k there are k pairwise incompatible valuations
outside of V.




Forcing non-cohesive
0000®0000000

Using valuations

Given a valuation v let f(v) be the such that
In¥Ym &,y (G,n,m) = 3Inedomv &(G’,n) |= v(n)

Let
V={v: p?3Inedomv &,(G' n) |=v(n)}

@ Either V contains a correct valuation v in which case we find an
extension g < p such that g |- ®.(G',n) |= (@ n)

@ Or we find 3 pairwise incompatible valuations v, v», v3 such that for
Jj < 3 the set :
) Uetwoorn
TCAIn
is large.
We start three possible generics from there
(4] G{o 1 € Lo X L1 with G{01} c A

Q G{1,2} € L1 x Lo with G{Lz} C Al
Q G{iO,2} € ,Co x Lo with G{io’2} = Al
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Evolution of largeness classes

O/\U \3

£0x£1x£2

// |

X Ag X Az

3 E]

(A0, AT, AT (AT, AL AL)

When forcing our second M9 statement we need 7 pairwise
incompatible valuations to end up in a large subclass of (2+)?
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The P-forcing

O Let up = 1. Let upp1 = (*5™).
@ Let /, be the set of strings o of length n such that o(n—m) <
um for m < n (see picture on next slide).

© We write | < I, if | is the set of leaf of a binary subtree of /,
(where I, is seen as a finite tree), such that for every branching
node o of /, the left subtree of o equals the right subtree of o.

v

Let P be the set of conditions (o}, a1 = 1< ly),(X: : Tely), L)
for some n.

(4] U,! < A,'
Q@ L c (2¥)lhl s a large class
Q@ (X: : Tel,) is partition generic in L
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[llustration of | < [,

, . /,\\
NN N NN

The blue part is some /<i/5. The set Iy is given by the tree {ac : o €
l3,a < ug}. The dashed part correspond to some potential extension
J <1 ly of | (where the tree below 75 equals the tree below 96).
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The Q-forcing

Let Q be the set of conditions {ag, 01, (X : T€l),L) for some I < I,
such that :

o o © A,‘
Q Lc (2‘*’)'” is a large class

© (X: : Tel) is partition generic in £

A Q condition p is i-valid if (X, n A" : Tel)e L

Let pe P with p = ((ob,01 : 1< 1,),(Xe : T€l,),L) for some n. Let
I <al,. Then p; is the Q condition defined by
pr = {ob, o0, (X + Tel), (L))

where 7/ (L) is the projection of £ on the components corresponding to /.
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The tree of (Q-condition

The combinatorics make sure that the tree of Q conditions always
have a valid branch of length n for every n. The blue branch corres-
pond to the blue | < I, from two slides ago.
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The forcing question

Let (00 1,00.1509 2,01 2,00 2,05 2, (X0, X1, X2), L) be a P-condition. Let
¢(e,00,1,01,2,00,2,n) be a code for the open set

(YO, Y17 Yz) : 37071 < Yo (V)] Yl Im d)e(UO,l v 70,1, N, m)/\
37‘172 YiuYydm (De(O'LQ U T2, N, m)/\
E|T072 cYou Y dm ¢e(00,2 U 70,2, N, m)

Given a formula 3n Vm ®¢(G, n, m) the question
pl1 230 Ym (G, n, m) is defined by : Is the class

LN m u{(e,aé IUT,G'{ 2u7,06 LUT,n)

TCA nEw

not a largeness class?
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Make some progress

Let _
V={v : pll?2-3nvm Priev) (G, n,m)}

@ If V contains a correct valuation we can extend one branch of
the tree to force the jump of our generic (along that branch)
to equal ®,(n) for some n.

@ Otherwise there must be k pairwise incompatible valuations for
k as large as we want. We take k to be 2u, + 1. We find k
largeness subclasses of our current large class. This splits each
branch of our tree with (””2“) children. On each of them we
force the jump our generic to disagree everywhere with two
pairwise incompatible valuation and then to be partial.

Note that if the outcome (1) occurs, we have to ask the forcing
question again, but excluding the branch on which we made some
progress.
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