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Metric Scott analysis: the story so far

2012 I visited the KGRC in Wien, working with Sy Friedman
and Katia Fokina on various topics. In the discussions the
question emerged whether the usual Scott rank of a Polish
metric space is countable. We viewed such a space as a
structure with distance relations Rq(x, y) that d(x, y) < q,
for fixed q 2 Q+.

2013 With Tsankov, and then Ben Yaacov and Doucha
developed a version of Scott analysis where the space is
viewed as a continuous structure. We related it to the
concept of Gromov-Hausdor↵ distance between metric
spaces. This happened during a Paris visit and then at the
Bonn Hausdor↵ Institute Programme “Universality and
Homogeneity”.

2014 Michal Doucha’s paper in the Ann. Pure Applied Logic
shows that the classical Scott rank of any Polish metric
space is at most !1.
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Metric Scott analysis: the story so far

2016 I I visited Caltech and gave a talk on this topic, and
suggested to William Chan, then a PhD student of
Kechris, to study possible algorithmic versions.

I Chan obtained such versions. He also noticed an error
at the very end of Doucha paper.

I The question is open (again): whether the classical
Scott rank of a Polish metric space is countable .

2017 Paper on the continuous version of metric Scott analysis,
with Ben Yaacov, Doucha and Tsankov appears.
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What is Scott analysis?

Broad definition: Scott analysis means assigning ordinal valued
ranks to elements of structures, and whole structures, in order
to measure complexity.

I Given a structure M , for tuples a, b 2 Mk, an ordinal

rank(a, b)

measures the complexity of distinguishing them by their
properties within M .

I If they can’t be distinguished at all, i.e. b = f(a) for some
automorphism f of M , we define rank(a, b) = 1.

I We use this to measure the complexity of orbits, and of the
whole structure.
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The back and forth games GM
↵ (a, b), and Scott relations

Player 1 (also called 8 player, or spoiler) challenges by
providing a side and an element c.

Player 2 (9 player, duplicator) has to provide an element d on
the other side that behaves similarly on the previous level.

There is an initial ordinal ↵. At each round, Player 1 picks an
ordinal smaller than the previous one.

Definition (Scott relations)

I The ground Scott relation r0(a, b) says that a, b satisfy the
same atomic diagram.

I For ↵ > 0, the Scott relation rM↵ (a, b) holds if Player 2 has
a winning strategy when the initial ordinal is ↵.

I rank(a, b) is the least ↵ so that Player 2 has no winning
strategy, or 1 if no such ↵ exists.
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Ranks of orbits, rank of the whole structure

I rank(a, b) is the least ↵ so that Player 2 has no w.s., or 1 if
no such ↵ exists.

I rank(a) is complexity of the orbit of a, i.e. the di�culty of
distinguishing a from all b that are not automorphic to a.
So this is sup{rank(a, b) : ¬a ⇡ b}.

I SR(M), the Scott rank of M , is the sup of the rank(a) for
all tuples a (of any length). This ordinal measures the
complexity of M .

I We have SR(M) < |M |+.
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Complexity

Assume that model M is countable. Let S be the signature
of M . These complexity measures closely correspond to the
descriptive complexity in L!1,!(S).
The quantifier rank of a formula is an ordinal given by the
number of quantifiers, infinite disjunctions, conjunctions.

I r↵(a, b) means that a and b agree on formulas of
complexity up to ↵.

I rank(a) is (about) the complexity of a formula defining the
orbit of a.

I SR(M) is (about) the complexity of a Scott sentence
for M , i.e. a description among the countable structures.

I It is also (about) the Borel complexity of {N : N ⇠= M}
(assumings each model has domain !).

Montalbán, A robuster Scott rank, PAMS 2015, gives an alternative

definition of Scott rank where the last three become equalities.
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Scott relations approximate the isomorphism relation

I The isomorphism relation between countable structures is
not Borel in general.

I We can extend the games to pairs of countable structures
M,N and tuples a 2 Mk, b 2 Nk.

I The rM,N
↵ are Borel relations approximating isomorphism.

I If ↵ is an ordinal so that all relations have stabilized
(i.e. rM,N

↵,n = rM,N

↵+1,n for each n) then

rM,N
↵ (a, b) , f(a) = b for some isomorphism f : M ⇠= N .
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What is metric Scott analysis?

We are given a Polish metric space (M,d) (i.e. complete and
separable). More generally M could be a Polish metric
structure, which also has a bunch of closed relations.

Classical metric Scott analysis: We view (M,d) as a structure
for the signature

{Rq : q 2 Q+},

where Rqxy means that d(x, y) < q.

Continuous metric Scott analysis:
The rM↵ are now uniformly continuous real-valued functions.
rM↵ (a, b) > ✏ means: in ↵ rounds Player 1 can win the ✏ game.
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Examples of classical metric Scott ranks

Natural spaces tend to have low Scott rank. For instance,

I A Polish metric space has Scott rank 0 i↵ it is
ultrahomogeneous. So Urysohn space U has Scott rank 0.

I A compact metric space X has Scott rank at most !:
if a, b 2 Xk satisfy the same existential formulas,
then they are isometric in X.

Theorem (S. Friedman, Fokina, Koerwien, N., 2012)

For each ↵ < !1, there is a countable discrete ultrametric space
M of Scott rank ↵ · !.

M is given as the maximal branches on a subtree of !<!. For
� 6= ⌧ 2 M , the distance is 2�k where k is the least
disagreement.

10/28



Metric Scott analysis with distance relations

(some more detail)
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Back and forth games along a linear order L

For a structure M , a linear order L, and a, b 2 Mn, the game
GM

L
(a, b) is played as follows:

I In the i-th round, Player 1 chooses a zi 2 L with zi <L zi�1

when i > 0, and either chooses an element an+i 2 M or an
element bn+i 2 M .

I Player 2 then chooses whichever of an+i or bn+i Player 1
did not choose.

I After round i, if the map from a0a1 . . . an+i to b0b1 . . . bn+i is
not a partial isomorphism, then Player 1 wins.

I The game ends in a win for Player 2 after either ! many
rounds, or if Player 1 has not already won but cannot
choose a zi+1 <L zi.
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Definition of ranks

I Fix a metric space M and a subset D ✓ M (later on a
countable dense subset).

I Define the game GM

L
(a, b,D) exactly as GM

L
(a, b), except

that Player 1’s choice of elements is restricted to D.

Definition (Ordinal ranks w.r.t. a subset D)

Let rankM (a, b,D) to be

I the least ordinal ↵ for which Player 2 does not have a
winning strategy in GM

↵ (a, b,D), or

I rankM (a, b,D) = 1 if there is no such ↵.

rankM (a,D) := sup{rankM (a, b,D) : rankM (a, b) < 1}.
SR(M,D) := sup{rankM (a,D) : a 2 M}.

Winning strategy of Player 2 for GM

L
(a, b) restricts to winning

strategy for GM

L
(a, b,D). So rankM (a, b)  rankM (a, b,D).
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Strategies and ill-foundedness of L

I Given some numbering of L and countable dense set
D ✓ M , a winning strategy for Player 2 is coded by a real.

I Checking that this real codes a winning strategy for
Player 2 is arithmetical relative to the metric on D.

Lemma

Suppose L is ill-founded, then:
Player 2 has a winning strategy in GL

M
(a, b,D) ,

there is an auto-isometry of M taking a to b.

Proof of ):
The auto-isometry and its inverse only have to be defined on D to
extend to the whole space, by completeness of M .
Player 1 plays along the infinite descending chain of L, choosing the
next element of D and alternating sides.

Player 2 uses her strategy.
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The rank of a pair of non-isometric tuples

is relatively computable

By M �D we denote the metric structure restricted to a fixed
countable dense set D.

Theorem (Chan, 2016; N and Turetsky, 2017)

Suppose that rankM (a, b,D) is not a computable ordinal
relative to (a, b,M �D).

Then there is an autoisometry of M taking a to b.

Corollary (Doucha, 2014)

(i) rankM (a)  !1 for each a

(ii) rank(M)  !1.

Proof (i):
I for each b 6⇡ a, the ordinal rankM (a, b,D) is relatively

computable, and hence countable.
I rankM (a, b)  rankM (a, b,D).
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Theorem (Chan, 2016; N and Turetsky, 2017)

Suppose rankM
D
(a, b) � !CK(a,b,M�D)

1 .
Then there is an auto-isometry of M taking a to b.

. Chan used admissible sets, we use ⌃1
1 bounding instead.

Proof.

I Let ✓(e) state that �a,b,M�D
e gives a total linear order L,

and there is a real which codes a winning strategy for
Player 2 in GM

L
(a, b,D).

I ✓ is ⌃1
1(a, b,M �D).

I ✓(e) holds for every e with �a,b,M�D
e well-ordered, for

otherwise rankM
D
(a, b) < !CK(a,b,M�D)

1 .

I The indices for wellorderings relative to an oracle X are

not a ⌃1
1(X) set. So ✓(e) holds for some e with �a,b,M�D

e

ill-founded. So there is an autoisometry of M taking a to b.
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Proposition (Strengthens result for rigid of Chan 2016)

Suppose that the isometry relation on tuples of the same length
in M is �1

1. Then SR(M) is computable in M �D.

Proof. The following property of e 2 ! is ⌃1
1:

�M�D
e codes a linear order L such that 9n9a, b 2 Mn

[a 6⇡ b ^ Player 2 has a winning strategy in GM

L (a, b,D).]

For each such e, �M�D
e is a well-ordering.

By ⌃1
1 bounding, the set of such �M�D

e is then bounded by an
ordinal computable in M �D.

This hypothesis on the complexity of the isometry relation is not

necessarily satisfied. Melleray (2015) has constructed a computable

metric space where the isometry relation of elements is not Borel; it is

in fact Borel-complete for OER of continuous Polish group actions.
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People’s views on the question:

is the Scott rank of every Polish metric space countable?

I Yes

I No

I Independent of ZFC

I Wrong question!
infinitary classical logic is too expressive, and hence the
wrong language for Polish metric spaces anyway.

For example, local compactness of Polish metric spaces can be
expressed in infinitary classical logic, but is not a Borel property

(N. and Solecki, CiE 2015).
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Complexity of low-level Scott relations

I For a computable structure M the Scott relations rMn are
in ⇧0

2n.

I In a computable metric space M , the players play reals, so
the Scott relations rMn are merely in ⇧1

2n.

I The following shows that in the metric setting, even the
level-1 Scott relation aren’t Borel in general.

Proposition (with P. Schlicht, Logic Blog 2017)

There is a computable Polish metric space M and a computable
sequence hynin2N of elements of M such that the set

{(m, k) 2 ! ⇥ ! | rM1 (ym, yk)}

is ⇧1
2-complete.

So, is there a continuous version of the Scott relations?
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Continuous metric Scott analysis
Joint work with Ben Yaacov, Doucha, Tsankov (2017)
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The ↵, ✏–game

I We are given for each k � 1 similarity functions r0 defined
on tuples a 2 Ak, b 2 Bk with values in R�0.

I They measure how a behaves similarly to b within the
context of the Polish metric structures. They are all
Lipschitz.

I E.g. r0(a, b) = maxi,k<n |dA(ai, ak)� dB(bi, bk)|/2.

I For bounded Polish metric spaces A,B, an ordinal ↵ and
a 2 An, b 2 Bn, " > 0, the game GA,B

↵," (a, b) is played almost
as before (for D = M), except that the winning condition
is di↵erent:

I After round i, if r0(a0a1 . . . an+i, b0b1 . . . bn+i) > ✏,
then Player 1 wins.

The Scott function r↵(a, b) is the infimum of the ✏ so that
Player 2 has a winning strategy in GM

↵,"(a, b).
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Explicit definition of Scott functions

One checks by induction on ordinals that

r↵+1,n(ā, b̄) = max
�
sup
x2A

inf
y2B

r↵,n+1(āx, b̄y), sup
y2B

inf
x2A

r↵,n+1(āx, b̄y)
�

r↵,n(ā, b̄) = sup
�<↵

r�,n(ā, b̄), for ↵ limit or ↵ = 1.

I The r↵ are uniformly continuous, and nondecreasing in ↵.

I So the least ordinal ↵A,B with r↵(., .) = r↵+1(., .), for each
length and each pair of tuples of the same length, is
countable.

I The ordinal ↵A,B is the continuous r0-Scott rank of the
pair A,B.
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Similarity function for isometry

Given bounded Polish metric spaces A,B.
For a 2 An, b 2 Bn, let

r0(a, b) = max
i<k<n

i · |dA(ai, ak)� dB(bi, bk)|.

Theorem

I With this choice of the ground Scott functions r0,
rA,B
↵A,B ,n(ā, b̄) is the infimum of the distancesP
i<n

i · d(f(ai), bi) where f : A ⇠= B.

I In particular, letting n = 0, the value rA,B

↵A,B ,0 = 0 means
that the two spaces are isometric.
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Similarity function for Gromov-Hausdor↵ distance

Given bounded Polish metric spaces A,B.

I Gromov (1999) defined dGH(A,B) as the infimum of the
Hausdor↵ distances of isometric embeddings of A,B into a
third metric space.

I In general this can be 0 without the spaces being isometric.

I For compact spaces, and for spaces with a lower bound on
the distance of two di↵erent points, having GH-distance 0
implies isometric.

I So “dGH(A,B) = 0” is not Borel (since isometry of such
discrete spaces is complete for S1 orbit relations).

For a, b 2 Mn, let r0(a, b) = maxi,k<n |d(ai, ak)� d(bi, bk)|/2.

Theorem

With this choice of the ground Scott functions r0,
rA,B

↵A,B ,0 is the Gromov-Hausdor↵ distance of A,B.
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A bit of infinitary continuous logic
still joint work with Ben Yaacov, Doucha, Tsankov (2017)
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Structures, moduli

I Metric structures M

I metric predicates of arity k are bounded uniformly
continuous R-valued functions on Mk

I distance is a metric predicate of arity 2, replacing =

A k-ary modulus of continuity is a certain nice function
� : [0,1)k ! [0,1).

A function f : Mk ! R respects � if for each x, y 2 Mk

|f(x)� f(y)|  �(d(xi, yi)i<k
).

Each predicate symbol R goes with a modulus �R of the same
arity.
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Formulas

I Start from basic formulas such as d̂(x, y) interpreted as
min(1, d(x, y)).
(The possible values have to be bounded.)

I The quantifiers over a variable xi are supxi
� and infxi �.

I Semantics:
for each metric L-structure M , formula �(x) and a 2 Mk,
we have a real value �M (a).

I Example with k = 0: let � = supx supy d̂(x, y).

What is �M?
Answer: The minimum of 1 and the diameter of M .
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Theorem (Ben Yaacov, Nies, Tsankov; http://arxiv.org/abs/1407.7102)

Let U : ML ! R be a bounded Borel function that is isometry-invariant.

There exists a continuous L!1,!(L)-sentence � such that

U(A) = �A,

for all A 2 M.

Example 1: U(M) = min(1, diam(M)).

Example 2: Fix Polish L-structure M .

I Let U(A) = 0 if A ⇠= M , and U(A) = 1 otherwise.

I The function U is Borel by Elliott, Farah, Paulsen, Rosendal, Toms,

Tornquist (2013).

I Then � is a continuous Scott sentence for M .
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Weak moduli

Let N be a natural number or N. A weak modulus of arity N is a

function ⌦ : [0,1)n ! [0,1] that is:

1. non-decreasing, subadditive, vanishing at zero:

⌦(�)  ⌦(� + �0)  ⌦(�) + ⌦(�0), ⌦(0) = 0;

2. lower semi-continuous in the product topology and separately

continuous in each argument.

Examples. The unbounded weak modulus ⌦U : [0,1)N ! [0,1] is

defined by

⌦U (�) = sup
i

i · �i.

The 1-Lipschitz weak modulus ⌦L : [0,1)N ! [0,1] is defined by

⌦L(�) = sup
i

�i, where � = (�0, �1, . . .).
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⌦-formulas

I All basic formulas �(x0, . . . , xn�1) that only depend on the first n

variables and respect ⌦ are n-ary ⌦-formulas.

I If {�i : i 2 N} are n-ary ⌦-formulas, then
W

i
�i and

V
i
�i are n-ary

⌦-formulas.

I If � is an (n+ 1)-ary ⌦-formula, then infxn � and supxn
� are n-ary

⌦-formulas.

I If �0, . . . ,�k�1 are n-ary ⌦-formulas and f : Rk ! R is a

1-Lipschitz function, then f(�0, . . . ,�k�1) is a n-ary ⌦-formula.

I An ⌦-sentence is a 0-ary ⌦-formula.
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Fix a signature L and a weak modulus ⌦ : [0,1)N ! [0,1].

Let ↵ be an ordinal or the symbol 1 greater than all ordinals. Let

n 2 N, let A and B be structures and let ā 2 An, b̄ 2 Bn. We define the

back-and-forth pseudo-distance rA,B,⌦
↵,n (ā, b̄) by induction on ↵:

rA,B

0 (ā, b̄) = sup
�

���A(ā)� �B(b̄)
��,

where � varies over all basic n-ary ⌦-formulas with I� ✓ [0, 1]. For ↵

limit (or 1),

rA,B

↵ (ā, b̄) = sup
�<↵

rA,B

�
(ā, b̄).

For the successor step,

rA,B

↵+1(ā, b̄) = sup
c2A, d2B

inf
c02A, d02B

rA,B

↵ (āc, b̄d0) _ rA,B

↵ (āc0, b̄d).
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Lemma

1. For fixed ↵ and n, r↵ is a pseudo-distance on the class of all pairs

Aā bounded by 1.

2. For fixed ↵, n, A, and B, the function rA,B
↵ is uniformly continuous

on An ⇥Bn, respecting the modulus ⌦|n on each side.

Lemma

1. If � < ↵ then r�  r↵ (i.e., r�,n  r↵,n for all n);

2. If  is an infinite cardinal and A and B are structures of density

character at most , then there exists ↵ < + such that

rA,B

↵+1 = rA,B
↵ . Moreover, in this case, the sequence of rA,B stabilizes

beyond ↵, i.e., rA,B
1 = rA,B

↵ .
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Define quantifier rank in the expected way.

Proposition

Let ↵ be an ordinal, A,B 2 M, ā 2 An and b̄ 2 Bn. Then

rA,B

↵ (ā, b̄) = sup
�

���A(ā)� �B(b̄)
��, (1)

where � varies over all n-ary ⌦-formulas of quantifier rank at most ↵.
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⌦-Scott sentences (1)

Let A be separable. For ↵ = 0,

�0,n,Aā =
_

�

���A(ā)� �(x0, . . . , xn�1)
��,

as � varies over a countable dense family of basic n-ary ⌦-formulas. For

↵ limit,

�↵,n,Aā =
_

�<↵

��,n,Aā.

For a successor,

�↵+1,n,Aā =

 
_

c2N
inf
xn

�↵,n+1,Aāc

!
_
 
sup
xn

^

c2N
�↵,n+1,Aāc

!
.
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⌦-Scott sentences (2)

Now let ↵A be the ⌦-Scott rank of A. Since A is separable, ↵A < !1.

We define �A, the Scott sentence of A, as

�A = �↵A,0,A _
_

n, ā2Nn

sup
x0,...,xn�1

1/2
���↵A,n,Aā � �↵A+1,n,Aā

��.

This is an ⌦-sentence; the coe�cient 1/2 is needed because the function

(x1, x2) 7! |x1 � x2| is 2-Lipschitz and in ⌦-formulas, we only allow

1-Lipschitz connectives.

Theorem

Let B be a separable structure. Then B |= (�A = 0) i↵ r1(A,B) = 0.
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First application

Recall: The unbounded weak modulus ⌦U : [0,1)N ! [0,1] is defined

by

⌦U (�) = sup
i

i · �i.

I We show that r⌦
U

1 (A,B) denotes isomorphism of metric structures:

it is 0 if A ⇠= B, and 1 otherwise.

I So we get a continuous Scott sentence for A.
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Second application

Recall: The 1-Lipschitz weak modulus ⌦L : [0,1)N ! [0,1] is defined

by

⌦L(�) = sup
i

�i, where � = (�0, �1, . . .).

I We show that r⌦L1 (A,B) is the Gromov-Hausdor↵ distance dGH of

A,B.

I For pure metric spaces, this is the inf of Hausdor↵ distances of

isometric embeddings of A,B into a third metric space C.

Corollary

For each separable A, the set {B : dGH(A,B) = 0} is Borel.
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