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Introduction

(Languages always finite)

Definition
For countable structures A,B, say:

I (Muchnik/weak reducibility) A ≤w B iff for every ω-copy
B of B there is an ω-copy A of A with B ≥T A.

I (Medvedev/strong reducibility) A ≤s B iff ∃e ∈ ω such
that ΦB

e
∼= A for every ω-copy B of B.

Write “CK (γ)” for the least admissible ordinal > γ:

Theorem (Sacks essentially)

For countable ordinals α, β we have α ≤s β iff α < CK (β).

What about ≤s?
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Non-linearity

What is ≤s -behavior of (countable) ordinals?
Trivially α + n ≥s α for all n ∈ ω, α ∈ ω1. Nontrivial reductions?

Theorem (Hamkins, Li)

ωCK
1 ≤s ω

CK
1 + ω.

Let Dord
s be the ≤s -degree structure of countable ordinals.

Question (Hamkins, Li)

Is Dord
s linearly ordered?

Theorem
There is a club C ⊂ ω1 which is an ≤s -antichain. And if ωL

1 < ω1,
then there is no embedding of ω1 into Dord

s .

If ωL
1 = ω1 then there is an embedding of ω1 into the countable ordinals

under uniform hyperarithmetic reducibility (via Hamkins-Linetsky-Reitz).
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Small (cheap) antichains

Definition (Generic strong reducibility)

For structures A,B of arbitrary cardinality, write A ≤∗s B iff
A ≤s B in every forcing extension where each is countable.

Theorem ((Weak) Shoenfield absoluteness)

Π1
2 statements with real parameters are upwards-absolute with

respect to forcing.

Observation
Since ≤∗s has countable predecessor property, have infinite
≤∗s -antichain of ordinals with supremum σ. Existence of infinite
≤s -antichain of countable ordinals is Σ1

2, and true after collapsing
σ to ω. Shoenfield absoluteness then gives infinite ≤s -antichain in
V .

What about uncountable antichains?
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Big (slightly less cheap) antichains

Let θ = sup{α < ω1 : α ≤∗s ω1}.

Let K be the set of countable elementary submodels M of a large
enough initial segment of V with θ + 1 ⊆ M. For M ∈ K let f (M)
be the (countable) image of ω1 under the Mostowski collapse of M.

Theorem
The set {f (M) : M ∈ K} is a club ≤s -antichain.

“Going-up” direction of antichain claim: if f (M) < f (N) with
M,N ∈ K then CK (f (M)) < f (N). For “going-down” direction we
use Mostowski absoluteness: if M is a transitive model of ZFC,
α, β ∈ OrdM , and M |= α ≤∗s β, then α ≤∗s β.
Now note that f (M) > θM = θN = θ for every M,N ∈ K.
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Projective uniform reducibilities

Arguments above were “coarse” and useless for detailed analysis;

do they at least generalize a bit? (Really just care about
absoluteness.)
A local reducibility notion is a relation R ⊆ ω × Struc × Struc
(where Struc is the set of structures with domain ω topologized as
usual) such that

I If R(a,X ,Y ) and R(b,Y ,Z ) then R(c ,X ,Z ) for some c .

I For each X there is some e with R(e,X ,X ).

I For each e,Y there is at most one X with R(e,X ,Y ).

E.g. “ΦY
e = X .” Really only the third is necessary, but first two

prevent artificialities. Yields uniform reducibility notion ER (and
nonuniform version — but irrelevant here). LCs: every projective
l.r.n. is appropriately absolute (e.g. generic version E∗R “makes
sense”). Call corresponding ERs “projective uniform reducibilities.”
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Extending results

Corollary (ZFC+LC)

For E any projective uniform reducibility, ∃ club E-antichain of
countable ordinals.

Original argument via E∗ requires projective absoluteness. Can also
use projective club dichotomy — much weaker consistency-wise:

I Each countable structure A has associated pre-well-ordering
IOE(A): domain = indices of strong reductions of some
ordinal to A, preordered by length of corresponding ordinal.

I IOE(A) is determined by countably many second-order facts
and ordertype is collapse of {α < ω1 : α ≤s A}.

I PCD gives club C of admissibles on which IOE(−) is
constant; can thin C to prevent “going-up,” and then
“going-down” would yield a self-embedding of a well-order
into a proper initial segment of itself.

Will use stronger hypotheses later.
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Generic presentability and Vaught’s conjecture

VC-counterexamples are “ordinal-like” — do they behave
analogously?

Definition (Knight-Montalbán-S.; Kaplan-Shelah)

G P-generic over V : a structure M ∈ V [G ] is generically
presentable if M = ν[G ] for some ν with


P2 ν[H0] ∼= ν[H1].

Especially interested in “countable” g.p.s.s: 
P |ν[G ]| = ℵ0.

Can talk about E∗, indices, etc. for generically presentable
structures; this is enough:

Theorem (Knight-Montalbán-S., folklore?)

If T ∈ V a VC-counterexample and M ∈ V [G ] a model of T , then
M is generically presentable over V .
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VC-counterexamples have short degree structures

Proposition (ZFC+LC)

If T is a VC-counterexample and E is a projective uniform
reducibility on the countable models of T , then

{otp({α ∈ ω1 : α ≤s A}) : A |= T countable}

is bounded strictly below ω1.

Look at generic versions for generically presentable models of T ;
collapse and use absoluteness.

Corollary (ZFC+LC)

If T is a counterexample to Vaught’s conjecture and E is a
projective uniform reducibility, then there is a bound below ω1 on
the ordinals which embed into the E-degrees of countable models
of T .

Transform a counterexample E to a counterexample to the above
proposition via a pre-well-ordering of the countable models of T of
length ω1.
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Digression 1: well-ordering VC-counterexamples

Missing from the above is an analogue of the “constant-on-a-club”
fact.

Definition
For E a projective uniform reducibility and A a structure, let
IOE(A) be the Mostowski collapse of the set of ordinals E A.

Is there a sense in which, for T a VC-counterexample, IOE(−) is
constant on “most” of Mod(T )?

Easiest approach to “yes” would
be to get a well-ordering of Mod(T ).

Question
If T is a VC-counterexample, is there a projective well-ordering of
the countable models of T (as opposed to a countable-to-one
pre-well-ordering)?
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Digression 2: virtual cardinalities

Generically presentable structures up to isomorphism are
nontrivial:

Theorem (Knight-Montalbán-S.; Kaplan-Shelah)

There are “countable” generically presentable structures without

copies in V (produced exactly when ωV
2 < ω

V [G ]
1 ).

Generically presentable sets up to equality are not: if G × H is
P×Q-generic, then V [G ] ∩ V [H] = V (Solovay). Other kinds of
g.p.?

Definition
A generically presentable cardinality is a pair (ν,P) where ν is a
P-name and 
P2 ν[G0] ≡ ν[G1].

Question
Is there a generically presentable cardinality (ν,P) such that
∀X ∈ V ,
P ν[G ] 6≡ X? In ZFC trivially no; over ZF? In canonical
models where choice fails? What if we require ν[G ] ⊆ RV [G ]?
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Non-VC counterexamples
Suppose T has a perfect set P of nonisomorphic countable
models.

For A,B |= T with domain ω, set e : A E B iff

I A = B, or

I there are Â, B̂ ∈ P with A ∼= Â,B ∼= B̂, and ΦB̂
e = Â.

The uniform degrees of models of T coming from E embed ω1 and
the reducibility is Σ1

1.

Corollary (ZFC+LC)

If T is a countable first-order theory with uncountably many
countable models, then T is a VC-counterexample iff every Σ1

1

uniform reducibility notion yields a degree structure on models of
T into which ω1 does not embed.

A similar construction gives a projective uniform reducibility E on
structures such that

{ordertype({α ∈ ω1 : α E A}) : A |= T}

is cofinal in ω1, so that yields another equivalence.
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The uniform degrees of models of T coming from E embed ω1

and
the reducibility is Σ1

1.

Corollary (ZFC+LC)

If T is a countable first-order theory with uncountably many
countable models, then T is a VC-counterexample iff every Σ1

1

uniform reducibility notion yields a degree structure on models of
T into which ω1 does not embed.

A similar construction gives a projective uniform reducibility E on
structures such that

{ordertype({α ∈ ω1 : α E A}) : A |= T}

is cofinal in ω1, so that yields another equivalence.



Non-VC counterexamples
Suppose T has a perfect set P of nonisomorphic countable
models. For A,B |= T with domain ω, set e : A E B iff

I A = B, or
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Digression 3: “near” miss counterexamples

If T has a perfect set of models, the uniform reducibility above
does not seem to come from a ∆1

1 relation on individual copies:
why should the perfect set P of nonisomorphic models contain a
representative of every model?

Definition
For Γ a pointclass, a theory T with uncountably many countable
models is Γ-short iff for every uniform reducibility notion E
coming from a local reducibility notion in Γ, there is no embedding
of ω1 into the E-degrees of models of T .

Σ1
1-shortness is equivalent to being a VC-counterexample.

Question
Is there a ∆1

1-short theory?

It is even unclear to me whether Π1
1-short theories (other than

VC-counterexamples) can exist — I suspect not.
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Phase transitions in strong reductions

(Back to Turing)
Unlike weak reducibility, it’s easy to show that there are many
“phase transitions” for strong reducibility on ordinals: for a club of
countable ordinals α, have
I {β < α : β ≤s α} bounded below α.
I min{β > α : β 6≤s α} < α · 2.

Most natural phase transition seems to be:

Definition
For A a countable structure we set

S(A) = sup{β ∈ ω1 : β ≤s A}.

(Can also define “generic” version S∗(A) for arbitrary-cardinality
A.)

Trivially S(α) ∈ (α,CK (α)].

Question
What more can we say about S(α)?
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Forcing over admissibles

An admissible set is a transitive A satisfying KP (+ Inf): basic set
theory axioms + Σ1-replacement + ∆1-separation.

Especially
interested in admissibles of form Lα or Lα[X ].

Theorem (Barwise; see also Ershov, Jensen, Zachar)

If A is an admissible set and P ∈ A is a forcing notion, then for G
P-generic over A the extension A[G ] is also admissible.

Theorem
For a club of countable ordinals α we have S(α) < CK (α). And
for every ordinal β ≥ ωL

1 we have S∗(α) < CK (α).
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P-generic over A the extension A[G ] is also admissible.

Theorem
For a club of countable ordinals α we have S(α) < CK (α). And
for every ordinal β ≥ ωL

1 we have S∗(α) < CK (α).



Bounding below the next admissible
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And
for every ordinal β ≥ ωL

1 we have S∗(α) < CK (α).

The idea is the following: First assume V=L. The set X of indices
for strong reductions of ordinals to ωL

1 = ω1 is a real, so X ∈ Lω1 .
Force over LCK(ω1) with Col(ω, ω1). Resulting LCK(ω1)[G ] is

admissible of height CK (ω1), and has ω-copy A of ωL
1 .

Admissibility then gives us

σ := otp(
∑
e∈X

ΦA
e )

in LCK(ω1)[G ]. So σ < CK (ω1), but σ = S(ω1).
Can now check that everything relevant was absolute to L, so this
goes through in ZFC alone. First sentence of theorem now follows
from same proof for α “sufficiently ω1-like” (admissible + “every
subclass of ω is a set” is enough).
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α-recursion far from ωCK
1

So S(α) is “usually small.” Is there still a sense in which it’s
“usually large”?

Restrict attention to admissible α.

Definition
G (α) is the supremum of the (ordertypes of the) α-recursive
well-orderings of α; that is,

sup{R ⊆ α2 : R is a well-ordering and is Σ1 over Lα}.

(This doesn’t seem to have a prior name/notation; Gostanian studied αs

satisfying G (α) = CK (α) following Platek and observations of H.

Friedman, and Abramson and Sacks called such ordinals “Gandy.”)

Proposition (Platek)

G (ω1) < CK (ω1). So for a club of α we have G (α) < CK (α).
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G vs. S

Key of Platek’s argument: ill-foundedness of A ⊆ ω2
1 is witnessed

by a countable sequence of countable ordinals

which is in Lω1 , so
well-foundedness is Π1 at ω1.

Theorem
For a club of α < ω1, we have G (α) < S(α).

Proof uses an extension of Σ1
1-bounding to structures, and relies on

the fact that we can effectively build a tree whose branches code
definable expansions of Lα from an ω-copy of α.
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Thanks!


