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The motivating question:

How difficult is it to tell if two
structures are isomorphic?



Index set approach

Let M0,M1, . . . be an enumeration of the computable structures.
The set

{(e, i) ∶ Me ≅Mi}

is Σ1
1-complete.



Reductions of equivalence relations

Let E be an equivalence relation on X, and F be an equivalence
relation on Y. A reduction of E to F is a nice function f ∶X → Y which
induces an embedding of the equivalence classes

X/E↪ Y/F.

That is, for all x, z ∈ X,

x E z ⇔ f(x)F f(z).



In descriptive set theory

▸ X and Y are Polish spaces and “nice” means Borel.

Theorem (Friedman-Stanley,1989)

Isomorphism of countable structures is not complete among Σ1
1

equivalence relations.



In computability

▸ X = Y = N and “nice” means computable.

Computable reducibility of equivalence relations investigated by,
among others,

▸ Ershov (1977)

▸ Bernardi and Sorbi (1983)

▸ Gao and Gerdes (2001)

▸ Coskey, Hamkins, R. Miller (2012)

▸ Andrews, Lempp, J. Miller, Ng, San Mauro and Sorbi (2014)

▸ Ianovski, R. Miller, Ng, Nies (2014)



The complexity of isomorphism

Theorem
(Fokina,S.Friedman,Harizanov,Knight,McCoy,Montalbán)

Isomorphism of computable structures is complete for Σ1
1

equivalence relations on N (under computable reduction).



What about definable isomorphisms?

We can refine the question and ask: how difficult is it to tell if there
is a definable isomorphism between two computable structures?

For example, we can ask whether there is a computable
isomorphism between two given computable structures.

Theorem (Fokina,S.Friedman,Nies)

Computable isomorphism on computable structures is complete for
Σ0

3 equivalence relations on N.



Hyperarithmetic isomorphism

Recall (Spector-Gandy) that the quantifier

(∃f ∈ HYP)ϕ

(where ϕ is arithmetic) gives a Π1
1 relation.

Theorem
Hyperarithmetic isomorphism on computable structures is complete
for Π1

1 equivalence relations on N.



A sketch



Enumerating Π1
1 equivalence relations

Π1
1 subsets of N are Σ1(Lωck

1
)-definable, which makes them

analogous to c.e. sets: they get enumerated in a process that takes
ωck

1 many steps.

If E is a Π1
1 equivalence relation then E is the union ⋃α<ωck

1
Eα of

increasing equivalence relations, with each Eα hyperarithmetic,
uniformly in α.



Π1
1 Completeness: the plan

Given a Π1
1 equivalence relation E, we build structures Mn for n ∈ N.

▸ If m E n then eventually, all decisions we make for Mm are
identical to those we make for Mn.

▸ If m �E n then we actively diagonalise against all possible
hyperarithmetic isomorphisms.



Components and isomorphisms

Each structure Mn consists of disjoint components indexed by pairs
(e,k). The component (e,k) is used to (possibly) diagonalise
against the eth hyperarithmetic isomorphism from Mk to Mn.

Each component (e,k) consists of two linear orderings, (Ae,k)Mn and
(Be,k)Mn . These are not a-priori distinguished from each other, but
the structures are designed so that any isomorphism f ∶Mk →Mn

must either

▸ restrict to isomorphisms

(Ae,k)Mk ≅ (Ae,k)Mn & (Be,k)Mk ≅ (Be,k)Mn ;

or

▸ restrict to isomorphisms

(Ae,k)Mk ≅ (Be,k)Mn & (Be,k)Mk ≅ (Ae,k)Mn .



Π1
1 events

There are two pieces of relevant information that may be given to
us:

▸ If the eth partial Π1
1 function ϕe∶N→ N is an isomorphism from

Mk to Mn, then at some level α < ωck
1 , we will be told if ϕe

matches the A’s and the B’s, or flips between them.

▸ If k E n then at some level α < ωck
1 we will discover this fact.

The question: if both happen, which happens first?



Diagonalising and copying

Suppose that at some level α < ωck
1 we discover that ϕe matches A’s

with A’s and B’s with B’s.

▸ if k��Eα n then we want to ensure that (Ae,k)Mk ≇ (Ae,k)Mn and
the same for the B’s.

▸ If k Eαn then we want to make (Ae,k)Mk ≅ (Ae,k)Mn and the same
for the B’s.

We will let (Ae,k)Mn ≅ ωα and (Be,k)Mn ≅ ωα ⋅ 2 if k Eα n, and flip
otherwise.



Why would this work?

Suppose that n E m. We want to show that Mn ≅Mm via a
hyperarithmetic isomorphism.

Suppose that n Eβ m for some β < ωck
1 . We construct an isomorphism

between Mn and Mm using (roughly) ∅(β). Fix a pair (e,k).
▸ If ϕe has declared its intentions at level α < β, then ∅(β) knows

this fact and can construct the isomorphism between the
orderings which have ordertype ωα and those which have
ordertype ωα ⋅ 2.

▸ If not, then whatever happens later, we know that
(Ae,k)Mn ≅ (Ae,k)Mm and the same for the B’s, and we will in fact
ensure that ∅(β) can compute the isomorphisms.



Questions

▸ Why ωα and ωα ⋅ 2? Why not 1 and 2?

▸ What happens if ϕe is partial?

▸ Why are the structures computable?



True stages



An answer

We use an iterated priority argument to approximate the entire
construction.

▸ Level α uses the information provided by ∅(α) to construct the
αth Hausdorff derivatives of the Ae,k’s and Be,k’s.

▸ If we diagonalise at level α then these derivatives are either 1
or 2.

▸ If n Eαm then ∅(α) builds an isomorphism between (Ae,k)Mn
α and

(Ae,k)Mm
α .

▸ At stage s < ω we use our current (finite) guess about each ∅(α)
to build accordingly.

The challenge:

▸ If at stage s we were wrong about ∅(α), we need to fix our
mistakes. On the other hand, at the same stage, we may have
been right about ∅(β) for some β < α, and we need to preserve
what we built at that level.



Iterated priority arguments

Developed by both Harrington and Ash-Knight.

Montalbán gave a dynamic version of the Ash-Knight machinery
which allows for level-by-level control. He defines:

▸ For each α and s < ω, a finite approximation ∇αs of ∅(α) at
stage s.

▸ The fundamental notion s ⩽α t: s appears α-true at stage t –
roughly, if ∇αt extends ∇αs .

▸ s is α-true if s ⩽α ω, where ∇αω is essentially ∅(α).



True stages, directly

We have discovered another approach to developing the machinery
of α-true stages. The main idea: rather than first define ∇αs and
based on these, the relations s ⩽α t, to define both by simultaneous
recursion on α.

▸ ⩽0 is the usual ordering on N.

▸ Given ⩽α, ∇αt is the increasing enumeration of the stages s <α t.

▸ Given ∇αt , we can define s ⩽α+1 t using non-deficiency stages:
s ⩽α+1 t if s ⩽α t (so ∇αs ≼ ∇αt ), and if y is the number
enumerated into (∇αs )′ at stage s, then no number smaller
than y has since been enumerated into (∇αt )′.

▸ For limit λ, s ⩽λ t iff (∀α < λ) s ⩽α t.



Existence of true stages

The main question is: why should there be any α-true stages for
α ⩾ ω?

We concentrate on the case α = ω.

We actually need to modify the definition:

▸ ∇n
t is the increasing enumeration of {s > n ∶ s <n t}.

Then:

▸ The first n-true stage after stage n is ω-true.

The point is that the empty oracle cannot be wrong about its jump:
it makes no commitments.

There is a reason why this resembles diagonal intersections.



A problem

What is α? We need to work with a computable copy. Thus, the
machinery only works when we fix a computable ordinal δ < ωck

1 and
define s ⩽α t for all α ⩽ δ. This doesn’t take us all the way up to ωck

1 .



Overspill



Overspill

Perform the entire construction inside an ω-model of ZFC which
omits ωck

1 .

In that universe V∗, we fix a computable pseudo-ordinal δ∗, and
develop the true stage machinery. We also:

▸ approximate the Π1
1 equivalence relation E∗ inside V∗; and

▸ diagonalise against partial Π1
1 functions in the sense of V∗.

V∗ is arithmetically, and hence hyperarithmetically, absolute. This
means:

▸ E∗α = Eα for α < ωck
1 ;

▸ if ϕe is total then it equals ϕ∗e (and we see convergence at a
well-founded level).

We note that if ϕ∗e reveals itself at an ill-founded level, then the
linear orderings Ae,k and Be,k are Harrison.



Extending beyond ωck
1 does not trouble us

▸ If n E m then n E∗αm for some α < ωck
1 . Thus, (∅(α))∗ computes

an isomorphism between Mn and Mm. But since α is standard,
(∅(α))∗ = ∅(α).

▸ If n �E m then for all α < ωck
1 , n��E

∗
αm. It is possible that n E∗ m.

Then (∅(β))∗ computes an isomorphism between Mn and Mm

for some ill-founded β; but (∅(β))∗ is not hyperarithmetic
(indeed it computes all hyperarithmetic sets).

Since we do not see that n E∗αm at any well-founded α, the
construction successfully diagonalises against all ϕ∗e which
declare themselves at a well-founded stage; this includes all
hyperarithmetic maps.



Thank you.


