The complexity of hyperarithmetic isomorphism

Noam Greenberg

Victoria University of Wellington

27 May 2019

Joint work with Dan Turetsky

The motivating question: How difficult is it to tell if two structures are isomorphic?

Let ${\mathfrak M}_0, {\mathfrak M}_1, \dots$ be an enumeration of the computable structures. The set

$$\{(e,i) : \mathcal{M}_e \cong \mathcal{M}_i\}$$

is Σ_1^1 -complete.

Let *E* be an equivalence relation on *X*, and *F* be an equivalence relation on *Y*. A *reduction* of *E* to *F* is a nice function $f: X \rightarrow Y$ which induces an embedding of the equivalence classes

$$X/E \hookrightarrow Y/F.$$

That is, for all $x, z \in X$,

$$x E z \iff f(x) F f(z).$$

▶ *X* and *Y* are Polish spaces and "nice" means Borel.

Theorem (Friedman-Stanley, 1989)

Isomorphism of countable structures is not complete among Σ_1^1 equivalence relations.

▶ $X = Y = \mathbb{N}$ and "nice" means computable.

Computable reducibility of equivalence relations investigated by, among others,

- Ershov (1977)
- Bernardi and Sorbi (1983)
- Gao and Gerdes (2001)
- Coskey, Hamkins, R. Miller (2012)
- Andrews, Lempp, J. Miller, Ng, San Mauro and Sorbi (2014)
- Ianovski, R. Miller, Ng, Nies (2014)

Theorem (Fokina, S. Friedman, Harizanov, Knight, McCoy, Montalbán) Isomorphism of computable structures is complete for Σ_1^1

equivalence relations on \mathbb{N} (under computable reduction).

We can refine the question and ask: how difficult is it to tell if there is a *definable* isomorphism between two computable structures?

For example, we can ask whether there is a computable isomorphism between two given computable structures.

Theorem (Fokina, S. Friedman, Nies)

Computable isomorphism on computable structures is complete for Σ_3^0 equivalence relations on \mathbb{N} .

Recall (Spector-Gandy) that the quantifier

 $(\exists f \in \mathsf{HYP}) \varphi$

(where φ is arithmetic) gives a Π_1^1 relation.

Theorem

Hyperarithmetic isomorphism on computable structures is complete for Π_1^1 equivalence relations on \mathbb{N} .

A sketch

 Π^1_1 subsets of $\mathbb N$ are $\Sigma_1(L_{\omega_1^{\mathsf{ck}}})$ -definable, which makes them analogous to c.e. sets: they get enumerated in a process that takes ω_1^{ck} many steps.

If *E* is a Π_1^1 equivalence relation then *E* is the union $\bigcup_{\alpha < \omega_1^{ck}} E_\alpha$ of increasing equivalence relations, with each E_α hyperarithmetic, uniformly in α .

Given a Π_1^1 equivalence relation *E*, we build structures \mathcal{M}_n for $n \in \mathbb{N}$.

- ▶ If *m E n* then eventually, all decisions we make for M_m are identical to those we make for M_n .
- ▶ If $m \notin n$ then we actively diagonalise against all possible hyperarithmetic isomorphisms.

Components and isomorphisms

Each structure \mathcal{M}_n consists of disjoint components indexed by pairs (e,k). The component (e,k) is used to (possibly) diagonalise against the e^{th} hyperarithmetic isomorphism from \mathcal{M}_k to \mathcal{M}_n .

Each component (e,k) consists of two linear orderings, $(A_{e,k})^{\mathcal{M}_n}$ and $(B_{e,k})^{\mathcal{M}_n}$. These are not a-priori distinguished from each other, but the structures are designed so that any isomorphism $f: \mathcal{M}_k \to \mathcal{M}_n$ must either

restrict to isomorphisms

$$(A_{e,k})^{\mathcal{M}_k} \cong (A_{e,k})^{\mathcal{M}_n}$$
 & $(B_{e,k})^{\mathcal{M}_k} \cong (B_{e,k})^{\mathcal{M}_n};$

or

restrict to isomorphisms

$$(A_{e,k})^{\mathcal{M}_k} \cong (B_{e,k})^{\mathcal{M}_n} \quad \& \quad (B_{e,k})^{\mathcal{M}_k} \cong (A_{e,k})^{\mathcal{M}_n}.$$

There are two pieces of relevant information that may be given to us:

- ▶ If the e^{th} partial Π_1^1 function $\varphi_e : \mathbb{N} \to \mathbb{N}$ is an isomorphism from \mathcal{M}_k to \mathcal{M}_n , then at some level $\alpha < \omega_1^{\text{ck}}$, we will be told if φ_e matches the *A*'s and the *B*'s, or flips between them.
- ▶ If *k E n* then at some level $\alpha < \omega_1^{ck}$ we will discover this fact.

The question: if both happen, which happens first?

Suppose that at some level $\alpha < \omega_1^{ck}$ we discover that φ_e matches A's with A's and B's with B's.

- ▶ If $k E_{\alpha} n$ then we want to make $(A_{e,k})^{\mathcal{M}_k} \cong (A_{e,k})^{\mathcal{M}_n}$ and the same for the *B*'s.

We will let $(A_{e,k})^{\mathcal{M}_n} \cong \omega^{\alpha}$ and $(B_{e,k})^{\mathcal{M}_n} \cong \omega^{\alpha} \cdot 2$ if $k E_{\alpha} n$, and flip otherwise.

Suppose that n Em. We want to show that $\mathcal{M}_n \cong \mathcal{M}_m$ via a hyperarithmetic isomorphism.

Suppose that $n E_{\beta} m$ for some $\beta < \omega_1^{ck}$. We construct an isomorphism between \mathcal{M}_n and \mathcal{M}_m using (roughly) $\emptyset^{(\beta)}$. Fix a pair (e, k).

- If φ_e has declared its intentions at level $\alpha < \beta$, then $\varnothing^{(\beta)}$ knows this fact and can construct the isomorphism between the orderings which have ordertype ω^{α} and those which have ordertype $\omega^{\alpha} \cdot 2$.
- ▶ If not, then whatever happens later, we know that $(A_{e,k})^{\mathcal{M}_n} \cong (A_{e,k})^{\mathcal{M}_m}$ and the same for the *B*'s, and we will in fact ensure that $\emptyset^{(\beta)}$ can compute the isomorphisms.

Questions

- Why ω^{α} and $\omega^{\alpha} \cdot 2$? Why not 1 and 2?
- What happens if φ_e is partial?
- Why are the structures computable?

True stages

An answer

We use an iterated priority argument to approximate the entire construction.

- Level α uses the information provided by $\emptyset^{(\alpha)}$ to construct the α^{th} Hausdorff derivatives of the $A_{e,k}$'s and $B_{e,k}$'s.
- If we diagonalise at level α then these derivatives are either 1 or 2.
- If $n E_{\alpha}m$ then $\emptyset^{(\alpha)}$ builds an isomorphism between $(A_{e,k})^{\mathcal{M}_n}_{\alpha}$ and $(A_{e,k})^{\mathcal{M}_m}_{\alpha}$.
- At stage $s < \omega$ we use our current (finite) guess about each $\emptyset^{(\alpha)}$ to build accordingly.

The challenge:

▶ If at stage *s* we were wrong about $\emptyset^{(\alpha)}$, we need to fix our mistakes. On the other hand, at the same stage, we may have been right about $\emptyset^{(\beta)}$ for some $\beta < \alpha$, and we need to preserve what we built at that level.

Developed by both Harrington and Ash-Knight.

Montalbán gave a dynamic version of the Ash-Knight machinery which allows for level-by-level control. He defines:

- ▶ For each α and $s < \omega$, a finite approximation ∇_s^{α} of $\emptyset^{(\alpha)}$ at stage *s*.
- ▶ The fundamental notion $s \leq_{\alpha} t$: *s* appears α -true at stage t roughly, if ∇_t^{α} extends ∇_s^{α} .
- ▶ *s* is α -*true* if *s* $\leq_{\alpha} \omega$, where ∇_{ω}^{α} is essentially $\emptyset^{(\alpha)}$.

We have discovered another approach to developing the machinery of α -true stages. The main idea: rather than first define ∇_s^{α} and based on these, the relations $s \leq_{\alpha} t$, to define both by simultaneous recursion on α .

- \leq_0 is the usual ordering on \mathbb{N} .
- ▶ Given \leq_{α} , ∇_t^{α} is the increasing enumeration of the stages $s <_{\alpha} t$.
- ▶ Given ∇_t^{α} , we can define $s \leq_{\alpha+1} t$ using non-deficiency stages: $s \leq_{\alpha+1} t$ if $s \leq_{\alpha} t$ (so $\nabla_s^{\alpha} \leq \nabla_t^{\alpha}$), and if y is the number enumerated into $(\nabla_s^{\alpha})'$ at stage s, then no number smaller than y has since been enumerated into $(\nabla_t^{\alpha})'$.
- For limit λ , $s \leq_{\lambda} t$ iff $(\forall \alpha < \lambda) \ s \leq_{\alpha} t$.

The main question is: why should there be any α -true stages for $\alpha \ge \omega$?

We concentrate on the case α = ω .

We actually need to modify the definition:

▶ ∇_t^n is the increasing enumeration of $\{s > n : s <_n t\}$.

Then:

• The first *n*-true stage after stage *n* is ω -true.

The point is that the empty oracle cannot be wrong about its jump: it makes no commitments.

There is a reason why this resembles diagonal intersections.

What is α ? We need to work with a computable copy. Thus, the machinery only works when we fix a computable ordinal $\delta < \omega_1^{ck}$ and define $s \leq_{\alpha} t$ for all $\alpha \leq \delta$. This doesn't take us all the way up to ω_1^{ck} .

Overspill

Overspill

Perform the entire construction inside an $\omega\text{-model}$ of ZFC which omits $\omega_1^{\rm ck}.$

In that universe V*, we fix a computable pseudo-ordinal $\delta^*,$ and develop the true stage machinery. We also:

- ▶ approximate the Π_1^1 equivalence relation E^* inside V^* ; and
- diagonalise against partial Π_1^1 functions in the sense of V^* .

 V^{\ast} is arithmetically, and hence hyperarithmetically, absolute. This means:

- $E_{\alpha}^{*} = E_{\alpha}$ for $\alpha < \omega_{1}^{\mathsf{ck}}$;
- ▶ if φ_e is total then it equals φ_e^* (and we see convergence at a well-founded level).

We note that if φ_e^* reveals itself at an ill-founded level, then the linear orderings $A_{e,k}$ and $B_{e,k}$ are Harrison.

Extending beyond $\omega_1^{\rm ck}$ does not trouble us

- ▶ If n E m then $n E_{\alpha}^* m$ for some $\alpha < \omega_1^{ck}$. Thus, $(\emptyset^{(\alpha)})^*$ computes an isomorphism between \mathcal{M}_n and \mathcal{M}_m . But since α is standard, $(\emptyset^{(\alpha)})^* = \emptyset^{(\alpha)}$.
- ▶ If $n \not\in m$ then for all $\alpha < \omega_1^{ck}$, $n \not\in \infty m$. It is possible that $n E_* m$. Then $(\emptyset^{(\beta)})^*$ computes an isomorphism between \mathcal{M}_n and \mathcal{M}_m for some ill-founded β ; but $(\emptyset^{(\beta)})^*$ is not hyperarithmetic (indeed it computes all hyperarithmetic sets).

Since we do not see that $nE_{\alpha}^{*}m$ at any well-founded α , the construction successfully diagonalises against all φ_{e}^{*} which declare themselves at a well-founded stage; this includes all hyperarithmetic maps.

Thank you.