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Introduction

Setting

We work in Cantor space 2N and call its members X ⊆ N, reals. We think
of members of Baire space NN as functions F : N→ N (coded as real
consisting of pairs of numbers). We use the standard normal form
theorems for reals and classes of reals as follows: A real X is Σ11 (in a real
G ) if it is of the form {n|∃F∀xR(F � x , x , n)} for a recursive (in G )
predicate R. A class K of reals is Σ11 (in G ) if it is of the form
{X |∃F∀xR(X � x ,F � x , x)} for a recursive (in G ) predicate R. A real or
class of reals is ∆1

1 (or hyperarithmetic) (in G ) if it and its complement are
Σ11 (in G ).

Main Theorem for Reals: If a real X is Σ11 in every member G of a
nonempty Σ11 class K of reals then X is itself Σ11.

Main Theorem for Classes of Reals: If a class A of reals is Σ11 in every
member G of a nonempty Σ11 class B of reals then X is itself Σ11.
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Introduction

Connections to Classical Results: Basis Theorem

Gandy Basis Theorem: Every nonempty Σ11 class K of reals contains a Z
such that ωZ1 = ωCK1 .
(ωZ1 is the least ordinal not recursive, or equivalently not ∆1

1 in Z ; ω
CK
1 is

ωZ1 for Z recursive (or ∆1
1).)

Kreisel Basis Theorem: If a nonhyperarithmetic real X (i.e. X is not
∆1
1) and K 6= ∅ is Σ11 then Kcontains a real Z in which X is not ∆1

1.
.

Equivalently, if X is ∆1
1 in every member of a nonempty Σ11 class K of

reals then X is ∆1
1.

So our main theorem for reals generalizes KBT by replacing ∆1
1 by Σ11 in

the second formulation. It also implies GBT: once one knows that Kleene’s
O is not Σ11 and so there is a Z ∈ K in which O is not Σ11. Spector
showed that this implies that ωZ1 = ωCK1 .
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Introduction

Omitting Types and Forcing

Several other classical results of hyperarithmetic theory follow from KBT
and hence our theorem. Sacks [1990] points out that these can be viewed
as omitting types theorems in ω-logic.

He then also says "The recursion theorist winding his way through a Σ11
set is a brother to the model theorist threading his way through a Henkin
tree."

Our proof, which requires no knowledge of either hyperarithmetic theory or
model theory, shows that there is another sibling traipsing (or perhaps
treading carefully) through a forcing construction and reaching the same
conclusions.

Upon hearing about our results Simpson and Steel each informed us of an
analogous theorem at a different level of the hierarchies.
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Introduction

Analogs

Theorem (Andrews and J. Miller): Let P be a nonempty Π01 class. If X
is Π01 in every member of P then X is Π01. (Or, equivalently, if X is Σ01 in
every member of P then X is Σ01.)

So this is the analog or our Main Theorem with Π01 replacing Σ11. Their
proof is like ours but uses forcing with Π01 classes in place of Σ11 classes.

At the Σ12 level note a classical basis theorem: Every nonempty Σ12 class of
reals contains a ∆1

2 real. Of course, any real Σ12 in a ∆1
2 real is itself Σ12.

So we have the analog for our main theorem with Σ12 replacing Σ11.
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Other Applications

Hyperarithmetic Theory Applications

Theorem (Kreisel): The intersection of all ω-models of ∆1
1

comprehension is HYP, the class of all hyperarithmetic (∆1
1) sets.

Theorem (Kreisel): The intersection of all ω-models of Σ11 choice
downward closed under many-one reducibility is also HYP.

More generally, can be phrased in terms of ω-models:

Theorem (Kreisel): Let K be a Π11 set of axioms in the language of
analysis (i.e. second order arithmetic). If a real X belongs to every
countable ω-model of K then X is ∆1

1.

In all of these results it is easy to see that the class of models described is
Σ11 and, of course, every member X of such a model is recursive in it and
so any real in every such model is Σ11 but these models are all trivially
closed under complementation. So these Theorems all follow from our
Main Theorem for reals.
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Type Omitting Applications

Type Omitting Applications

Moving to the type omitting point of view we will consider various logics
with associated languages all of which are assumed to be countable and
usually recursive (or we relativize to the language).

In each case we may consider any set Γ of formulas of the relevant
language closed under allowed changes of variables (typically all the
fomulas in which case we may omit Γ).

We refer to any subset p of Γ with each element having the same finite
sequence x1, . . . , xn of free variables as a Γ-n-type.

The type is realized in a structureM for the language if there are
elements a1, . . . , an of the structure such that p = {ϕ ∈ Γ|ϕ has free
variables x1, . . . , xn & M � ϕ(a1, . . . , an)}.

If p is not realized inM we say it is omitted inM. (Note that this
definition is more general than the usual definition of an n-type for the
language.)
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Type Omitting Applications

N -Logics and Omega Models

We begin with a class of logics somewhat more general than ω-logic. We
consider two sorted logics (N ,M, . . .) in the usual sense of having two
types of variables one ranging over the elements of N and the other over
those ofM in addition to the usual apparatus of function, relation and
constant symbols of ordinary first order logic. While formally merely a
version of first order logic gotten by adding on predicates for N and M,
this logic can be turned into a much stronger one (N -logic) by requiring
that all models have their first sort (with some functions and relations on
it as given in the structure) isomorphic to some given countable first order
structure.

The most common example of these logics is ω-logic where we require
that N be isomorphic to the ordinal ω or the standard model N of
arithmetic (depending on the language intended). Again, the most
common examples are given by classes of ω-models of fragments T of
second order arithmetic.
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Type Omitting Applications

Type Omitting for N -Logic

As being an N -model, or even one also satisfying some Π11 theory T , is
clearly Σ11 in N , we immediately get all the results mentioned above and
more as corollaries of our theorem.

Theorem: If T is a Π11 set of sentences of (N ,M, . . .); N is a countable
structure for the appropriate sublanguage (for the first sort); T has an
N -model; Γ is a Σ11 in N set of formulas of the language of (N ,M, . . .)
(with free variables x1, . . . , xn) and p is a Γ- n-type which is not Σ11 in N ,
then there is an N -model of T not realizing p.
Proof: By a Skolem-Löwenheim type argument, if T has an N -model it
has a countable N -model. Being a countable N -model of T is Σ11 in N
and so by our Theorem (relativized to N ) there is an N -model
(N ,M, . . .) of T in which p is not even Σ11 in N . Of course, any Γ-
n-type realized in (N ,M, . . .) is hyperarithmetic in (N ,M, . . .).
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Type Omitting Applications

Countable Sequences of Reals or Types

Viewing our theorem as a type omitting argument suggests that we should
be able to omit any countable sequence of types (reals) of the appropriate
sort rather than just one. A simple modification of our proof gives the
expected result.

Theorem: If K is a nonempty Σ11 class reals and Xn a countable sequence
of reals none of which is Σ11, then there is a G ∈ K such that no Xn is Σ11
in G . Similarly if no Xn is ∆1

1, then there is a G ∈ K such that no Xn is
∆1
1 in G .

Of course, we can relativize this theorem as well to any real C . As a
sample application we build ω-models of ZFC controlling the well-founded
part.
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Type Omitting Applications

Countable Sequences of Reals or Types

Viewing our theorem as a type omitting argument suggests that we should
be able to omit any countable sequence of types (reals) of the appropriate
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Type Omitting Applications

Omega Models of ZFC

Corollary: For every real C and reals Xn not ∆1
1 in C , there is a countable

ω-model of ZFC containing C but not containing any Xn whose well
founded part consists of the ordinals less than ωC1 , the first ordinal not
recursive in C .

Proof: Being a countable ω-model of ZFC containing (a set isomorphic
to) C (under the isomorphism taking the ω of the model to true ω) is
clearly a Σ11 in C property.

Now apply the Theorem on omitting sequences of types first adding on a
new real X0 = OC (i.e. Kleene’s O relativized to C ) to the list.

It supplies a countable ω-model of ZFC containing C but not containing
any of the Xn. As it contains C it contains every ordering recursive in C
and so order types for every ordinal less than ωC1 . On the other hand, if
there were an ordinal in the model isomorphic to ωC1 then, by standard
results of hyperarithmetic theory, OC would be in the model as well.
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Type Omitting Applications

Some Other Logics Between First and Second Order

Type omitting theorems (some known others perhaps not) for several
related logics between first and second order are consequences of our
theorem in the same way.
Weak second order logic is second order logic where the second order
quantifiers range over finite subsets of the domain.
Cardinality logic (for ℵ0) adds a new quantifier Q0 to first order logic and
interprets Q0xϕ(x) to mean that there are infinitely many x such that
ϕ(x) holds.
Ancestral logic adds the transitive closure operation to first order logic by
introducing a new operator (quantifier) TC , extending the syntax by
making TCx ,yϕ(x , y)(u, v) a formula with new free variables u and v for
every ordinary formula ϕ and variables x , y (which become bound in this
formula). The semantics are determined by saying that
TCx ,yϕ(x , y , u, v)(a, b) holds if there is a sequence of elements
a = c0, . . . cn = b such that ϕ(ci , ci+1) holds for every i < n.
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Type Omitting Applications

Type Omitting for these Logics

It is not hard to argue along the lines of the proof of the existence of
countable elementary submodels for countable first order theories that if a
set of sentences in one of these languages has a model (with the
associated semantics) then it has a countable model.

Satisfaction in a countable model for each of these logics is arithmetical in
the (atomic diagram of the) model. Thus the same type omitting theorem
holds for each of them.

Corollary: Consider the languages of any of weak second order logic,
cardinality logic (for ℵ0), ancestral logic or N -logic (for a countable N ). If
T and Γ are, respectively, Π11 and Σ11 (in N ) sets of sentences in the
appropriate language, T has a model (for the appropriate semantics), and
{pi} is a set of Γ- ni -types none of which is Σ11 (in N ) then there is an
(N -)model of T not realizing any of the pi .
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Type Omitting Applications

Computable Infinitary Logic

A similar argument works for computable infinitary logic Lc based on a
(wlog recursive) first order language L if one takes care of the issue that
the infinitary languages are no longer recursive (or even hyperarithmetical
which would work as well). We omit the detailed definition of this logic.

The crucial points for our purpose are that individual formulas are coded
by hyperarithmetic sets, being a formula is Π11 while being a formula of
some level α (or less) of the hyperarithmetical hierarchy and satisfaction
for such formulas are uniformly hyperarithmetical (in the underlying first
order structure) at essentially the same level.
Thus if T is a Π11 set of sentences of Lc , a structureM (for L) then
being a model of T is a Σ11 property ofM.

A subset Γ of Lc is Σ11 on Lc if Γ = Lc ∩ S for some S ∈ Σ11 or
equivalently if Γ ∪ {n|n /∈ Lc} is Σ11. For example, the set Γα of formulas
of Lc of level at most α is Σ11 on Lc (in fact it is a ∆1

1 set). As before we
have the notion of p being a Γ-n-type. We thus immediately have the
appropriate type omitting theorems for computable infinitary languages.
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Type Omitting Applications

Omitting Types for Lc

Corollary: If T is a Π11 set of sentences of Lc , T has a model (and so a
countable model), Γ is is Σ11 on Lc and {pi} is a set of Γ-ni -types of Lc
none of which is Σ11 on Lc then there is a model of T not realizing any of
the pi . For example, if {pi} is a set of Γαi - ni -types of Lc none of which is
Σ11 then there is a model of T not realizing any of the pi .

Proof: Let S witness that Γ is Σ11 on Lc , i.e. S is Σ11 and Γ = Lc ∩ S . If
pi were realized inM then there would be a1, . . . ani inM such that
pi = {ϕ(x1, . . . xni ) ∈ Lc ∩ S |M � ϕ(a1, . . . ani )} = Lc ∩ S ∩{n|n /∈ Lc ∨ n
is the code for a formula ϕ(x1, . . . xni ) andM � ϕ(a1, . . . ani )}. As Lc is
Π11 and the required manipulations on formulas are hyperarithmetic and
satisfaction inM is Σ11, pi would be Σ11 on Lc contrary to our assumption.
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Type Omitting Applications

Modal Logics

We next consider modal logics such as L�,♦ with semantics given by
Kripke frames F = (W ,S , C(p)) consisting of a set W of worlds p, an
accessibility relation S on W and a collection {C(p)|p ∈W } of classical
structures for a first order language L.

Here we can derive type omitting theorems that allow the class of classical
models considered to be specified by a set of sentences of L�,♦ but also
by specifications on the whole frame that allow us to say, for example, that
a modal sentence is forced in some world, every world or some collection of
world with some characterization.

Similarly, we can impose requirements on the accessibility relation in the
allowed frames. Some standard such restrictions on the accessibility
relation can also be captured by sentences of L�,♦ but others are more
complicated. For example, frames in which the accessibility relation on
worlds is precisely < on N or some other fixed countable relation or some
class of relations with another characterization.

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 16 / 28



Type Omitting Applications

Modal Logics

We next consider modal logics such as L�,♦ with semantics given by
Kripke frames F = (W ,S , C(p)) consisting of a set W of worlds p, an
accessibility relation S on W and a collection {C(p)|p ∈W } of classical
structures for a first order language L.

Here we can derive type omitting theorems that allow the class of classical
models considered to be specified by a set of sentences of L�,♦ but also
by specifications on the whole frame that allow us to say, for example, that
a modal sentence is forced in some world, every world or some collection of
world with some characterization.

Similarly, we can impose requirements on the accessibility relation in the
allowed frames. Some standard such restrictions on the accessibility
relation can also be captured by sentences of L�,♦ but others are more
complicated. For example, frames in which the accessibility relation on
worlds is precisely < on N or some other fixed countable relation or some
class of relations with another characterization.

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 16 / 28



Type Omitting Applications

Modal Logics

We next consider modal logics such as L�,♦ with semantics given by
Kripke frames F = (W ,S , C(p)) consisting of a set W of worlds p, an
accessibility relation S on W and a collection {C(p)|p ∈W } of classical
structures for a first order language L.

Here we can derive type omitting theorems that allow the class of classical
models considered to be specified by a set of sentences of L�,♦ but also
by specifications on the whole frame that allow us to say, for example, that
a modal sentence is forced in some world, every world or some collection of
world with some characterization.

Similarly, we can impose requirements on the accessibility relation in the
allowed frames. Some standard such restrictions on the accessibility
relation can also be captured by sentences of L�,♦ but others are more
complicated. For example, frames in which the accessibility relation on
worlds is precisely < on N or some other fixed countable relation or some
class of relations with another characterization.
Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 16 / 28



Type Omitting Applications

Omitting Types for Modal Logics

One approach to types here is to consider a Γ as above contained in L�,♦
and to say that a Γ-n-type q is realized in a frame F if there is a p ∈W
and and a1, . . . , an ∈ C(p) such that p = {ϕ ∈ Γ|ϕ has free variables
x1, . . . , xn & p  ϕ(a1, . . . , an)}.

Corollary: Let T be a Π11 set consisting of Σ11 sentences about the
accessibility relation S and Σ11 sentences about the relation p  ϕ where p
ranges over W and ϕ ranges over sentences of L�,♦ such that there is is a
countable frame making all of these sentences true. If {qi} is a set of Γ-
ni -types none of which is Σ11, then there is a frame in which all the
sentences of T are true not realizing any of the qi .

We can say more by allowing types to restrict the accessibility relation and
the whole frame. We can also allow the language and structure at each
world to be appropriate for one of the generalized logics above.
Question: Has anyone studied modal logics where the structures at each
node are one for fragments of second order logic as above?
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Type Omitting Applications

Extension Logics

We suggest a logic that captures the notions of being able to extend a
structure by adding on new relation symbols satisfying given axioms.

Consider an L for any of the nonmodal logics discussed above. We extend
L by adding on new relation symbols Rn of arity in. The language LExt
consist of all formulas of the form ∃R1 . . . ∃Rmϕ where ϕ is a formula of L
in the extended language.The semantics for LExt is the obvious second
order one. We define n-types p and their realization as before.

Corollary: If T is a Π11 set of formulas of LExt with a model, Γ a Σ11 set
of formulas of LExt as before and {pi} is a set of ni -types of LExt none of
which is Σ11 then there is a modelM of T in which no pi is realized.

Basically, this says that, with our usual restrictions on the L-theories T ,
that there is a model which can be extended by relations satisfying
additional axioms involving the new relations but cannot be further
extended to one satisfying any one of a collection of sentences pi in LExt
Question: Has anyone seen a logic like this? Do any "practical" instances
or applications come to mind?
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Question: Has anyone seen a logic like this? Do any "practical" instances
or applications come to mind?
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Type Omitting Applications

Complexity of the Reals and Models

Finally, we point out that the complexity of the G of our main Theorem
and the version for sequences and so of many of the Corollaries can be as
low as possible.

Theorem: If K is a nonempty Σ11 class reals and Xn a countable sequence
of reals uniformly ∆1

1 (recursive) in O none of which is Σ11, then there is a
G ∈ K with G ∆1

1 (recursive) in O such that no Xn is Σ11 in G . Indeed, G
can be chosen to be of strictly smaller hyperdegree than O, i.e. O is not
∆1
1 in G . As in Theorem for sequences of reals, if we assume only that the

Xn are not ∆1
1 then we may conclude that none is ∆1

1 in G .

As a sample application we give a common generalization combining both
KBT and GBT.
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Type Omitting Applications

Kleene and Gandy Basis Theorems

Note that by a result of Spector’s, ωCK1 < ωA1 implies that O is ∆1
1 in A

(indeed there is a pair of Σ11 formulas ϕ(X , n) and θ(X , n) which define O
and its complement for any X with ωX1 > ωCK1 ), we thus simultaneously
have the Kleene and Gandy basis theorem for Σ11 classes as well.

Theorem: Every nonempty Σ11 class of reals K contains an element A
recursive in and of strictly smaller hyperdegree than O. In particular, one
with ωA1 = ωCK1 .
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Classes of Reals

Classes of Reals

Theorem: If a class A of reals is Σ11 in every member of a nonempty Σ11
class B of reals then it is Σ11.
The proof here also uses Gandy-Harrington forcing but with a real forcing
argument exploiting some nontrivial facts about the notion of forcing. It
also uses several theorems of effective descriptive set theory.

If we only want the class to not be ∆1
1 in a real in B then there is a much

simpler proof more like that of the one for reals that also extends to
sequences.
Theorem: If B is a nonempty Σ11 class of reals and Xn a countable
sequence of classes of reals none of which is ∆1

1, then there is a G ∈ B
such that no Xn is ∆1

1 in G .
Corollary: Any class A of reals which is ∆1

1 in every member of a Σ11 class
B of reals is ∆1

1.
Question: Does the last theorem hold with Σ11 replaced by ∆1

1?
Question: Are there any descriptive set theory applications of these
results?
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Proof of Main Theorem for Reals

Gandy-Harrington Forcing

We use the language of Gandy-Harrington Forcing but essentially none of
the machinery.

Forcing conditions are nonempty Σ11 classes L of reals with set
containment as extension.

We view the Σ11 formulas ϕ(G , n) as of the form ∃F∀xR(G � x ,F � x , x , n)
with R recursive. We say that L  ϕ(G , n) if (∀Z ∈ L)(ϕ(Z , n)). If, as
usual, we say L  ¬ϕ(G , n) if (∀L̂⊆L)(L̂ 1 ϕ(G , n)), this definition is
then equivalent to (∀Z ∈ L)(¬ϕ(Z , n)). The point here is that if there is
a Z ∈ L such that ϕ(Z , n) then L̂ = L ∩ {Z |ϕ(Z , n)} is a nonempty
extension of L which obviously forces ϕ(G , n).

We now list all the Σ11 formulas Θk (G , n). These are the formulas that
could potentially define the reals Σ11 in any G .

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 22 / 28



Proof of Main Theorem for Reals

Gandy-Harrington Forcing

We use the language of Gandy-Harrington Forcing but essentially none of
the machinery.

Forcing conditions are nonempty Σ11 classes L of reals with set
containment as extension.

We view the Σ11 formulas ϕ(G , n) as of the form ∃F∀xR(G � x ,F � x , x , n)
with R recursive. We say that L  ϕ(G , n) if (∀Z ∈ L)(ϕ(Z , n)). If, as
usual, we say L  ¬ϕ(G , n) if (∀L̂⊆L)(L̂ 1 ϕ(G , n)), this definition is
then equivalent to (∀Z ∈ L)(¬ϕ(Z , n)). The point here is that if there is
a Z ∈ L such that ϕ(Z , n) then L̂ = L ∩ {Z |ϕ(Z , n)} is a nonempty
extension of L which obviously forces ϕ(G , n).

We now list all the Σ11 formulas Θk (G , n). These are the formulas that
could potentially define the reals Σ11 in any G .

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 22 / 28



Proof of Main Theorem for Reals

Gandy-Harrington Forcing

We use the language of Gandy-Harrington Forcing but essentially none of
the machinery.

Forcing conditions are nonempty Σ11 classes L of reals with set
containment as extension.

We view the Σ11 formulas ϕ(G , n) as of the form ∃F∀xR(G � x ,F � x , x , n)
with R recursive. We say that L  ϕ(G , n) if (∀Z ∈ L)(ϕ(Z , n)). If, as
usual, we say L  ¬ϕ(G , n) if (∀L̂⊆L)(L̂ 1 ϕ(G , n)), this definition is
then equivalent to (∀Z ∈ L)(¬ϕ(Z , n)). The point here is that if there is
a Z ∈ L such that ϕ(Z , n) then L̂ = L ∩ {Z |ϕ(Z , n)} is a nonempty
extension of L which obviously forces ϕ(G , n).

We now list all the Σ11 formulas Θk (G , n). These are the formulas that
could potentially define the reals Σ11 in any G .

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 22 / 28



Proof of Main Theorem for Reals

Gandy-Harrington Forcing

We use the language of Gandy-Harrington Forcing but essentially none of
the machinery.

Forcing conditions are nonempty Σ11 classes L of reals with set
containment as extension.

We view the Σ11 formulas ϕ(G , n) as of the form ∃F∀xR(G � x ,F � x , x , n)
with R recursive. We say that L  ϕ(G , n) if (∀Z ∈ L)(ϕ(Z , n)). If, as
usual, we say L  ¬ϕ(G , n) if (∀L̂⊆L)(L̂ 1 ϕ(G , n)), this definition is
then equivalent to (∀Z ∈ L)(¬ϕ(Z , n)). The point here is that if there is
a Z ∈ L such that ϕ(Z , n) then L̂ = L ∩ {Z |ϕ(Z , n)} is a nonempty
extension of L which obviously forces ϕ(G , n).

We now list all the Σ11 formulas Θk (G , n). These are the formulas that
could potentially define the reals Σ11 in any G .

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 22 / 28



Proof of Main Theorem for Reals

Plan of Proof

We consider an X which is a candidate for being Σ11 in every G ∈ K. We
build a sequence Lk of conditions beginning with
L0 = K ={G |∃F0∀xRm0(G � x ,F0 � x , x)} as well as initial segments γk
(of length at least k) of our intended G and δi ,k of witnesses Fi (of length
at least k) showing that G ∈ Lk . More precisely, each Lk will be of the
form G ⊃ γk & ∀i ≤ k∃Fi ⊃ δi ,k∀xRmi (G � x ,Fi � x , x) for some recursive
Rmi (independent of k).

Thus, if we successfully continue our construction keeping Lk nonempty
for each k then the Fi = limk δi ,k for i ≤ k will witness that G = limk γk
is in every Lk as we guarantee that Rmi (γk � x , δi ,k � x , x) holds for every
i , x < k and every k .
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Proof of Main Theorem for Reals

The Construction

We begin with γ0 = ∅ = δ0,0 and Rm0 as specified by K. So our G will at
least be in K as desired. Suppose we have defined γj and δi ,j for j , i ≤ k
and wish to define Lk+1, γk+1 and δi ,k+1 for i ≤ k + 1 so as to prevent X
from being Σ11 in G via Θk . We ask if there is an m ∈ ω and a nonempty
L ⊆ Lk such that

1. m /∈ X and L  Θk (G ,m) or

2. m ∈ X and L  ¬Θk (G ,m)

Suppose there is such an L of the form ∃Fk+1∀xRmk+1(G � x ,Fk+1 � x , x).
As L ⊆ Lk is nonempty we can choose γk+1 ⊃ γk and δi .k+1 ⊃ δi ,k for
i ≤ k and some δk+1,k+1 all of length at least k + 1 such that Lk+1 as
given by G ⊃ γk+1 & (∀i ≤ k + 1)(∃Fi ⊃ δi ,k+1)(∀xRmi )(G � x ,Fi � x , x)
is a nonempty subclass of L (and so, in particular,
Rmi (γk+1 � x , δi ,k+1 � x , x) for every i , x ≤ k + 1). We can now continue
our induction.
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Proof of Main Theorem for Reals

First Outcome: All successes

Note that if we can successfully define nonempty Lk in this way for every
k then we build a G = limk γk and Fi = limk δi ,k for each i such that
∀xRmi (G � x ,Fi � x , x). In particular ∀xRm0(G � x ,F0 � x , x) and so
G ∈ K. Similarly, G ∈ Lk for every k > 0. If X is Σ11(G ) as assumed, then
X = {n|Θk (G , n)} for some k. We consider the construction at stage
k + 1 and the L chosen at that stage. If we were in case (1) then as
L  Θk (G ,m) and G ∈ Lk+1, Θ(G ,m) is true but m /∈ X for a
contradiction. Similarly, if we were in case (2), as L  ¬Θk (G ,m) and
G ∈ Lk+1, ¬Θ(G ,m) is true but m ∈ X again for a contraction.
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Proof of Main Theorem for Reals

Second Outcome: A First Failure

Thus we can assume that there is some first stage k + 1 at which there are
no m and L ⊆ Lk as required in the construction. In this case we claim
that X is Σ11 as desired. Indeed, we claim that X is defined as a Σ11 real by
m ∈ X ⇔ (∃Z ∈ Lk )Θk (Z ,m). To see this suppose first that
(∃Z ∈ Lk )Θk (Z ,m). Then L as defined by Lk & Θk (G ,m) is a nonempty
Σ11 class such that L  Θk (G ,m) and so we would have m ∈ X as desired
by the assumed failure of (1) at stage k + 1 of the construction. On the
other hand, if (∀Z ∈ Lk )(¬Θk (Z ,m) then Lk  ¬Θk (G ,m) and so by the
failure of (2) at stage k + 1 of the construction, m /∈ X as desired.

Richard A. Shore (Cornell University) Σ11 reals and classes 06/03/2019 26 / 28



Proof of Main Theorem for Reals

Proof for Sequences Version

Repeat the proof of the Main Theorem but at step k + 1 = 〈n, j〉 of the
construction replace X by Xn and Θk by Θj . If we successfully pass
through all steps k then the previous argument shows that no Xn is Σ11 in
G ∈ K. On the other hand, if the construction terminates at step
k + 1 = 〈n, j〉 then the previous argument shows that Xn is defined as a
Σ11 real by m ∈ Xn ⇔ (∃Z ∈ Lk )Θj (Z ,m) for a contradiction. For the ∆1

1
version, simply consider the sequence Yn where Yn = Xn if Xn is not Σ11
and Yn is the complement of Xn otherwise (i.e. Xn is not Π11). As now no
Yn is Σ11(G ), no Xn is ∆1

1(G ).
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Proof of Main Theorem for Reals

Complexity Calculations

Suppose we are at step k = 〈n, j〉 of the construction. We know that
either there is an m ∈ Xn such that (∀Z ∈ Lk )(¬Θk (Z ,m)) or an m /∈ Xn
such that (∃Z ∈ Lk )(Θk (Z ,m)). As the Xn are uniformly ∆1

1 (recursive)
in O, and the rest of the conditions considered in the construction are
either Σ11 or Π11, O can hyperarithmetically (recursively) decide which case
to apply. As choosing the γk+1 ⊃ γk and δi .k+1 ⊃ δi ,k for i ≤ k and so
Lk+1 now only require finding ones for which the corresponding Σ11 class
Lk+1 is nonempty, this step is also recursive in O. Of course, as we can
add O onto the list of Xn, we then guarantee that O is not Σ11 in G and
so, of course, not ∆1

1 in G as required.
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