Σ^1_1 in every real in a Σ^1_1 class or reals is Σ^1_1

Richard A. Shore Cornell University

Higher Recursion Theory and Set Theory In Honor of Theodore A. Slaman and W. Hugh Woodin Institute for Mathematical Sciences and National University of Singapore Singapore June 3, 2019 Joint work with Ted Slaman and Leo Harrington

Setting

We work in Cantor space $2^{\mathbb{N}}$ and call its members $X \subseteq \mathbb{N}$, *reals*. We think of members of Baire space $\mathbb{N}^{\mathbb{N}}$ as functions $F : \mathbb{N} \to \mathbb{N}$ (coded as real consisting of pairs of numbers). We use the standard normal form theorems for reals and classes of reals as follows: A real X is Σ_1^1 (in a real G) if it is of the form $\{n|\exists F\forall xR(F \upharpoonright x, x, n)\}$ for a recursive (in G) predicate R. A class \mathcal{K} of reals is Σ_1^1 (in G) if it is of the form $\{X|\exists F\forall xR(X \upharpoonright x, F \upharpoonright x, x)\}$ for a recursive (in G) predicate R. A real or class of reals is Δ_1^1 (or hyperarithmetic) (in G) if it and its complement are Σ_1^1 (in G).

Setting

We work in Cantor space $2^{\mathbb{N}}$ and call its members $X \subseteq \mathbb{N}$, *reals*. We think of members of Baire space $\mathbb{N}^{\mathbb{N}}$ as functions $F : \mathbb{N} \to \mathbb{N}$ (coded as real consisting of pairs of numbers). We use the standard normal form theorems for reals and classes of reals as follows: A real X is Σ_1^1 (in a real G) if it is of the form $\{n|\exists F\forall xR(F \upharpoonright x, x, n)\}$ for a recursive (in G) predicate R. A class \mathcal{K} of reals is Σ_1^1 (in G) if it is of the form $\{X|\exists F\forall xR(X \upharpoonright x, F \upharpoonright x, x)\}$ for a recursive (in G) predicate R. A real or class of reals is Δ_1^1 (or hyperarithmetic) (in G) if it and its complement are Σ_1^1 (in G).

Main Theorem for Reals: If a real X is Σ_1^1 in every member G of a nonempty Σ_1^1 class \mathcal{K} of reals then X is itself Σ_1^1 .

Setting

We work in Cantor space $2^{\mathbb{N}}$ and call its members $X \subseteq \mathbb{N}$, *reals*. We think of members of Baire space $\mathbb{N}^{\mathbb{N}}$ as functions $F : \mathbb{N} \to \mathbb{N}$ (coded as real consisting of pairs of numbers). We use the standard normal form theorems for reals and classes of reals as follows: A real X is Σ_1^1 (in a real G) if it is of the form $\{n|\exists F\forall xR(F \upharpoonright x, x, n)\}$ for a recursive (in G) predicate R. A class \mathcal{K} of reals is Σ_1^1 (in G) if it is of the form $\{X|\exists F\forall xR(X \upharpoonright x, F \upharpoonright x, x)\}$ for a recursive (in G) predicate R. A real or class of reals is Δ_1^1 (or hyperarithmetic) (in G) if it and its complement are Σ_1^1 (in G).

Main Theorem for Reals: If a real X is Σ_1^1 in every member G of a nonempty Σ_1^1 class \mathcal{K} of reals then X is itself Σ_1^1 .

Main Theorem for Classes of Reals: If a class \mathcal{A} of reals is Σ_1^1 in every member G of a nonempty Σ_1^1 class \mathcal{B} of reals then X is itself Σ_1^1 .

Gandy Basis Theorem: Every nonempty Σ_1^1 class \mathcal{K} of reals contains a Z such that $\omega_1^Z = \omega_1^{CK}$. (ω_1^Z is the least ordinal not recursive, or equivalently not Δ_1^1 in Z; ω_1^{CK} is ω_1^Z for Z recursive (or Δ_1^1).)

Gandy Basis Theorem: Every nonempty Σ_1^1 class \mathcal{K} of reals contains a Z such that $\omega_1^Z = \omega_1^{CK}$. (ω_1^Z is the least ordinal not recursive, or equivalently not Δ_1^1 in Z; ω_1^{CK} is ω_1^Z for Z recursive (or Δ_1^1).)

Kreisel Basis Theorem: If a nonhyperarithmetic real X (i.e. X is not Δ_1^1) and $\mathcal{K} \neq \emptyset$ is Σ_1^1 then \mathcal{K} contains a real Z in which X is not Δ_1^1 .

Gandy Basis Theorem: Every nonempty Σ_1^1 class \mathcal{K} of reals contains a Z such that $\omega_1^Z = \omega_1^{CK}$. (ω_1^Z is the least ordinal not recursive, or equivalently not Δ_1^1 in Z; ω_1^{CK} is ω_1^Z for Z recursive (or Δ_1^1).)

Kreisel Basis Theorem: If a nonhyperarithmetic real X (i.e. X is not Δ_1^1) and $\mathcal{K} \neq \emptyset$ is Σ_1^1 then \mathcal{K} contains a real Z in which X is not Δ_1^1 .

Equivalently, if X is Δ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{K} of reals then X is Δ_1^1 .

Gandy Basis Theorem: Every nonempty Σ_1^1 class \mathcal{K} of reals contains a Z such that $\omega_1^Z = \omega_1^{CK}$. (ω_1^Z is the least ordinal not recursive, or equivalently not Δ_1^1 in Z; ω_1^{CK} is ω_1^Z for Z recursive (or Δ_1^1).)

Kreisel Basis Theorem: If a nonhyperarithmetic real X (i.e. X is not Δ_1^1) and $\mathcal{K} \neq \emptyset$ is Σ_1^1 then \mathcal{K} contains a real Z in which X is not Δ_1^1 .

Equivalently, if X is Δ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{K} of reals then X is Δ_1^1 .

So our main theorem for reals generalizes KBT by replacing Δ_1^1 by Σ_1^1 in the second formulation. It also implies GBT: once one knows that Kleene's O is not Σ_1^1 and so there is a $Z \in \mathcal{K}$ in which O is not Σ_1^1 . Spector showed that this implies that $\omega_1^Z = \omega_1^{CK}$.

Several other classical results of hyperarithmetic theory follow from KBT and hence our theorem. Sacks [1990] points out that these can be viewed as omitting types theorems in ω -logic.

Several other classical results of hyperarithmetic theory follow from KBT and hence our theorem. Sacks [1990] points out that these can be viewed as omitting types theorems in ω -logic.

He then also says "The recursion theorist winding his way through a Σ_1^1 set is a brother to the model theorist threading his way through a Henkin tree."

Several other classical results of hyperarithmetic theory follow from KBT and hence our theorem. Sacks [1990] points out that these can be viewed as omitting types theorems in ω -logic.

He then also says "The recursion theorist winding his way through a Σ_1^1 set is a brother to the model theorist threading his way through a Henkin tree."

Our proof, which requires no knowledge of either hyperarithmetic theory or model theory, shows that there is another sibling traipsing (or perhaps treading carefully) through a forcing construction and reaching the same conclusions.

Several other classical results of hyperarithmetic theory follow from KBT and hence our theorem. Sacks [1990] points out that these can be viewed as omitting types theorems in ω -logic.

He then also says "The recursion theorist winding his way through a Σ_1^1 set is a brother to the model theorist threading his way through a Henkin tree."

Our proof, which requires no knowledge of either hyperarithmetic theory or model theory, shows that there is another sibling traipsing (or perhaps treading carefully) through a forcing construction and reaching the same conclusions.

Upon hearing about our results Simpson and Steel each informed us of an analogous theorem at a different level of the hierarchies.

Theorem (Andrews and J. Miller): Let P be a nonempty Π_1^0 class. If X is Π_1^0 in every member of P then X is Π_1^0 . (Or, equivalently, if X is Σ_1^0 in every member of P then X is Σ_1^0 .)

Theorem (Andrews and J. Miller): Let P be a nonempty Π_1^0 class. If X is Π_1^0 in every member of P then X is Π_1^0 . (Or, equivalently, if X is Σ_1^0 in every member of P then X is Σ_1^0 .)

So this is the analog or our Main Theorem with Π_1^0 replacing Σ_1^1 . Their proof is like ours but uses forcing with Π_1^0 classes in place of Σ_1^1 classes.

Theorem (Andrews and J. Miller): Let P be a nonempty Π_1^0 class. If X is Π_1^0 in every member of P then X is Π_1^0 . (Or, equivalently, if X is Σ_1^0 in every member of P then X is Σ_1^0 .)

So this is the analog or our Main Theorem with Π_1^0 replacing Σ_1^1 . Their proof is like ours but uses forcing with Π_1^0 classes in place of Σ_1^1 classes.

At the Σ_2^1 level note a classical basis theorem: Every nonempty Σ_2^1 class of reals contains a Δ_2^1 real. Of course, any real Σ_2^1 in a Δ_2^1 real is itself Σ_2^1 . So we have the analog for our main theorem with Σ_2^1 replacing Σ_1^1 .

Theorem (Kreisel): The intersection of all ω -models of Δ_1^1 comprehension is HYP, the class of all hyperarithmetic (Δ_1^1) sets.

Theorem (Kreisel): The intersection of all ω -models of Δ_1^1 comprehension is HYP, the class of all hyperarithmetic (Δ_1^1) sets.

Theorem (Kreisel): The intersection of all ω -models of Σ_1^1 choice downward closed under many-one reducibility is also HYP.

Theorem (Kreisel): The intersection of all ω -models of Δ_1^1 comprehension is HYP, the class of all hyperarithmetic (Δ_1^1) sets.

Theorem (Kreisel): The intersection of all ω -models of Σ_1^1 choice downward closed under many-one reducibility is also HYP.

More generally, can be phrased in terms of ω -models:

Theorem (Kreisel): Let K be a Π_1^1 set of axioms in the language of analysis (i.e. second order arithmetic). If a real X belongs to every countable ω -model of K then X is Δ_1^1 .

Theorem (Kreisel): The intersection of all ω -models of Δ_1^1 comprehension is HYP, the class of all hyperarithmetic (Δ_1^1) sets.

Theorem (Kreisel): The intersection of all ω -models of Σ_1^1 choice downward closed under many-one reducibility is also HYP.

More generally, can be phrased in terms of ω -models:

Theorem (Kreisel): Let K be a Π_1^1 set of axioms in the language of analysis (i.e. second order arithmetic). If a real X belongs to every countable ω -model of K then X is Δ_1^1 .

In all of these results it is easy to see that the class of models described is Σ_1^1 and, of course, every member X of such a model is recursive in it and so any real in every such model is Σ_1^1 but these models are all trivially closed under complementation. So these Theorems all follow from our Main Theorem for reals.

Richard A. Shore (Cornell University)

Moving to the type omitting point of view we will consider various logics with associated languages all of which are assumed to be countable and usually recursive (or we relativize to the language).

Moving to the type omitting point of view we will consider various logics with associated languages all of which are assumed to be countable and usually recursive (or we relativize to the language).

In each case we may consider any set Γ of formulas of the relevant language closed under allowed changes of variables (typically all the fomulas in which case we may omit Γ).

Moving to the type omitting point of view we will consider various logics with associated languages all of which are assumed to be countable and usually recursive (or we relativize to the language).

In each case we may consider any set Γ of formulas of the relevant language closed under allowed changes of variables (typically all the fomulas in which case we may omit Γ).

We refer to any subset p of Γ with each element having the same finite sequence x_1, \ldots, x_n of free variables as a Γ -*n*-*type*.

Moving to the type omitting point of view we will consider various logics with associated languages all of which are assumed to be countable and usually recursive (or we relativize to the language).

In each case we may consider any set Γ of formulas of the relevant language closed under allowed changes of variables (typically all the fomulas in which case we may omit Γ).

We refer to any subset p of Γ with each element having the same finite sequence x_1, \ldots, x_n of free variables as a Γ -*n*-type.

The type is *realized* in a structure \mathcal{M} for the language if there are elements a_1, \ldots, a_n of the structure such that $p = \{\varphi \in \Gamma | \varphi \text{ has free variables } x_1, \ldots, x_n \& \mathcal{M} \vDash \varphi(a_1, \ldots, a_n)\}.$

(日) (周) (三) (三)

Moving to the type omitting point of view we will consider various logics with associated languages all of which are assumed to be countable and usually recursive (or we relativize to the language).

In each case we may consider any set Γ of formulas of the relevant language closed under allowed changes of variables (typically all the fomulas in which case we may omit Γ).

We refer to any subset p of Γ with each element having the same finite sequence x_1, \ldots, x_n of free variables as a Γ -*n*-type.

The type is *realized* in a structure \mathcal{M} for the language if there are elements a_1, \ldots, a_n of the structure such that $p = \{\varphi \in \Gamma | \varphi \text{ has free variables } x_1, \ldots, x_n \& \mathcal{M} \vDash \varphi(a_1, \ldots, a_n)\}.$

If p is not realized in \mathcal{M} we say it is *omitted* in \mathcal{M} . (Note that this definition is more general than the usual definition of an *n*-type for the language.)

${\mathcal N}$ -Logics and Omega Models

We begin with a class of logics somewhat more general than ω -logic. We consider two sorted logics $(\mathcal{N}, \mathcal{M}, \ldots)$ in the usual sense of having two types of variables one ranging over the elements of \mathcal{N} and the other over those of \mathcal{M} in addition to the usual apparatus of function, relation and constant symbols of ordinary first order logic. While formally merely a version of first order logic gotten by adding on predicates for N and M, this logic can be turned into a much stronger one $(\mathcal{N}$ -logic) by requiring that all models have their first sort (with some functions and relations on it as given in the structure) isomorphic to some given countable first order structure.

$\ensuremath{\mathcal{N}}$ -Logics and Omega Models

We begin with a class of logics somewhat more general than ω -logic. We consider two sorted logics $(\mathcal{N}, \mathcal{M}, \ldots)$ in the usual sense of having two types of variables one ranging over the elements of \mathcal{N} and the other over those of \mathcal{M} in addition to the usual apparatus of function, relation and constant symbols of ordinary first order logic. While formally merely a version of first order logic gotten by adding on predicates for N and M, this logic can be turned into a much stronger one $(\mathcal{N}$ -logic) by requiring that all models have their first sort (with some functions and relations on it as given in the structure) isomorphic to some given countable first order structure.

The most common example of these logics is ω -logic where we require that \mathcal{N} be isomorphic to the ordinal ω or the standard model \mathbb{N} of arithmetic (depending on the language intended). Again, the most common examples are given by classes of ω -models of fragments T of second order arithmetic.

Type Omitting for ${\mathcal N}$ -Logic

As being an \mathcal{N} -model, or even one also satisfying some Π_1^1 theory \mathcal{T} , is clearly Σ_1^1 in \mathcal{N} , we immediately get all the results mentioned above and more as corollaries of our theorem.

Type Omitting for ${\mathcal N}$ -Logic

As being an \mathcal{N} -model, or even one also satisfying some Π_1^1 theory \mathcal{T} , is clearly Σ_1^1 in \mathcal{N} , we immediately get all the results mentioned above and more as corollaries of our theorem.

Theorem: If T is a Π_1^1 set of sentences of $(\mathcal{N}, \mathcal{M}, \ldots)$; \mathcal{N} is a countable structure for the appropriate sublanguage (for the first sort); T has an \mathcal{N} -model; Γ is a Σ_1^1 in \mathcal{N} set of formulas of the language of $(\mathcal{N}, \mathcal{M}, \ldots)$ (with free variables x_1, \ldots, x_n) and p is a Γ - n-type which is not Σ_1^1 in \mathcal{N} , then there is an \mathcal{N} -model of T not realizing p.

Type Omitting for ${\mathcal N}$ -Logic

As being an \mathcal{N} -model, or even one also satisfying some Π_1^1 theory \mathcal{T} , is clearly Σ_1^1 in \mathcal{N} , we immediately get all the results mentioned above and more as corollaries of our theorem.

Theorem: If T is a Π_1^1 set of sentences of $(\mathcal{N}, \mathcal{M}, \ldots)$; \mathcal{N} is a countable structure for the appropriate sublanguage (for the first sort); T has an \mathcal{N} -model; Γ is a Σ_1^1 in \mathcal{N} set of formulas of the language of $(\mathcal{N}, \mathcal{M}, \ldots)$ (with free variables x_1, \ldots, x_n) and p is a Γ - n-type which is not Σ_1^1 in \mathcal{N} , then there is an \mathcal{N} -model of T not realizing p.

Proof: By a Skolem-Löwenheim type argument, if T has an \mathcal{N} -model it has a countable \mathcal{N} -model. Being a countable \mathcal{N} -model of T is Σ_1^1 in \mathcal{N} and so by our Theorem (relativized to \mathcal{N}) there is an \mathcal{N} -model $(\mathcal{N}, \mathcal{M}, \ldots)$ of T in which p is not even Σ_1^1 in \mathcal{N} . Of course, any Γ -*n*-type realized in $(\mathcal{N}, \mathcal{M}, \ldots)$ is hyperarithmetic in $(\mathcal{N}, \mathcal{M}, \ldots)$.

(日) (同) (三) (三) (三)

Countable Sequences of Reals or Types

Viewing our theorem as a type omitting argument suggests that we should be able to omit any countable sequence of types (reals) of the appropriate sort rather than just one. A simple modification of our proof gives the expected result.

Countable Sequences of Reals or Types

Viewing our theorem as a type omitting argument suggests that we should be able to omit any countable sequence of types (reals) of the appropriate sort rather than just one. A simple modification of our proof gives the expected result.

Theorem: If \mathcal{K} is a nonempty Σ_1^1 class reals and X_n a countable sequence of reals none of which is Σ_1^1 , then there is a $G \in \mathcal{K}$ such that no X_n is Σ_1^1 in G. Similarly if no X_n is Δ_1^1 , then there is a $G \in \mathcal{K}$ such that no X_n is Δ_1^1 in G.

Countable Sequences of Reals or Types

Viewing our theorem as a type omitting argument suggests that we should be able to omit any countable sequence of types (reals) of the appropriate sort rather than just one. A simple modification of our proof gives the expected result.

Theorem: If \mathcal{K} is a nonempty Σ_1^1 class reals and X_n a countable sequence of reals none of which is Σ_1^1 , then there is a $G \in \mathcal{K}$ such that no X_n is Σ_1^1 in G. Similarly if no X_n is Δ_1^1 , then there is a $G \in \mathcal{K}$ such that no X_n is Δ_1^1 in G.

Of course, we can relativize this theorem as well to any real C. As a sample application we build ω -models of ZFC controlling the well-founded part.

Corollary: For every real *C* and reals X_n not Δ_1^1 in *C*, there is a countable ω -model of ZFC containing *C* but not containing any X_n whose well founded part consists of the ordinals less than ω_1^C , the first ordinal not recursive in *C*.

Corollary: For every real *C* and reals X_n not Δ_1^1 in *C*, there is a countable ω -model of ZFC containing *C* but not containing any X_n whose well founded part consists of the ordinals less than ω_1^C , the first ordinal not recursive in *C*.

Proof: Being a countable ω -model of ZFC containing (a set isomorphic to) *C* (under the isomorphism taking the ω of the model to true ω) is clearly a Σ_1^1 in *C* property.

Corollary: For every real C and reals X_n not Δ_1^1 in C, there is a countable ω -model of ZFC containing C but not containing any X_n whose well founded part consists of the ordinals less than ω_1^C , the first ordinal not recursive in C.

Proof: Being a countable ω -model of ZFC containing (a set isomorphic to) *C* (under the isomorphism taking the ω of the model to true ω) is clearly a Σ_1^1 in *C* property.

Now apply the Theorem on omitting sequences of types first adding on a new real $X_0 = O^C$ (i.e. Kleene's O relativized to C) to the list.

Corollary: For every real C and reals X_n not Δ_1^1 in C, there is a countable ω -model of ZFC containing C but not containing any X_n whose well founded part consists of the ordinals less than ω_1^C , the first ordinal not recursive in C.

Proof: Being a countable ω -model of ZFC containing (a set isomorphic to) *C* (under the isomorphism taking the ω of the model to true ω) is clearly a Σ_1^1 in *C* property.

Now apply the Theorem on omitting sequences of types first adding on a new real $X_0 = O^C$ (i.e. Kleene's O relativized to C) to the list.

It supplies a countable ω -model of ZFC containing C but not containing any of the X_n . As it contains C it contains every ordering recursive in Cand so order types for every ordinal less than ω_1^C . On the other hand, if there were an ordinal in the model isomorphic to ω_1^C then, by standard results of hyperarithmetic theory, O^C would be in the model as well.
Some Other Logics Between First and Second Order

Type omitting theorems (some known others perhaps not) for several related logics between first and second order are consequences of our theorem in the same way.

Weak second order logic is second order logic where the second order quantifiers range over finite subsets of the domain.

Cardinality logic (for \aleph_0) adds a new quantifier Q_0 to first order logic and interprets $Q_0 x \varphi(x)$ to mean that there are infinitely many x such that $\varphi(x)$ holds.

Ancestral logic adds the transitive closure operation to first order logic by introducing a new operator (quantifier) TC, extending the syntax by making $TC_{x,y}\varphi(x,y)(u,v)$ a formula with new free variables u and v for every ordinary formula φ and variables x, y (which become bound in this formula). The semantics are determined by saying that $TC_{x,y}\varphi(x, y, u, v)(a, b)$ holds if there is a sequence of elements $a = c_0, \ldots c_n = b$ such that $\varphi(c_i, c_{i+1})$ holds for every i < n.

イロト 不得下 イヨト イヨト 三日

Type Omitting for these Logics

It is not hard to argue along the lines of the proof of the existence of countable elementary submodels for countable first order theories that if a set of sentences in one of these languages has a model (with the associated semantics) then it has a countable model.

Type Omitting for these Logics

It is not hard to argue along the lines of the proof of the existence of countable elementary submodels for countable first order theories that if a set of sentences in one of these languages has a model (with the associated semantics) then it has a countable model.

Satisfaction in a countable model for each of these logics is arithmetical in the (atomic diagram of the) model. Thus the same type omitting theorem holds for each of them.

Type Omitting for these Logics

It is not hard to argue along the lines of the proof of the existence of countable elementary submodels for countable first order theories that if a set of sentences in one of these languages has a model (with the associated semantics) then it has a countable model.

Satisfaction in a countable model for each of these logics is arithmetical in the (atomic diagram of the) model. Thus the same type omitting theorem holds for each of them.

Corollary: Consider the languages of any of weak second order logic, cardinality logic (for \aleph_0), ancestral logic or \mathcal{N} -logic (for a countable \mathcal{N}). If T and Γ are, respectively, Π_1^1 and Σ_1^1 (in \mathcal{N}) sets of sentences in the appropriate language, T has a model (for the appropriate semantics), and $\{p_i\}$ is a set of Γ - n_i -types none of which is Σ_1^1 (in \mathcal{N}) then there is an (\mathcal{N} -)model of T not realizing any of the p_i .

A similar argument works for computable infinitary logic \mathcal{L}_c based on a (wlog recursive) first order language \mathcal{L} if one takes care of the issue that the infinitary languages are no longer recursive (or even hyperarithmetical which would work as well). We omit the detailed definition of this logic.

A similar argument works for computable infinitary logic \mathcal{L}_c based on a (wlog recursive) first order language \mathcal{L} if one takes care of the issue that the infinitary languages are no longer recursive (or even hyperarithmetical which would work as well). We omit the detailed definition of this logic. The crucial points for our purpose are that individual formulas are coded by hyperarithmetic sets, being a formula is Π_1^1 while being a formula of some level α (or less) of the hyperarithmetical hierarchy and satisfaction for such formulas are uniformly hyperarithmetical (in the underlying first order structure) at essentially the same level.

A similar argument works for computable infinitary logic \mathcal{L}_c based on a (wlog recursive) first order language \mathcal{L} if one takes care of the issue that the infinitary languages are no longer recursive (or even hyperarithmetical which would work as well). We omit the detailed definition of this logic. The crucial points for our purpose are that individual formulas are coded by hyperarithmetic sets, being a formula is Π_1^1 while being a formula of some level α (or less) of the hyperarithmetical hierarchy and satisfaction for such formulas are uniformly hyperarithmetical (in the underlying first order structure) at essentially the same level.

Thus if T is a Π_1^1 set of sentences of \mathcal{L}_c , a structure \mathcal{M} (for \mathcal{L}) then being a model of T is a Σ_1^1 property of \mathcal{M} .

A similar argument works for computable infinitary logic \mathcal{L}_c based on a (wlog recursive) first order language \mathcal{L} if one takes care of the issue that the infinitary languages are no longer recursive (or even hyperarithmetical which would work as well). We omit the detailed definition of this logic. The crucial points for our purpose are that individual formulas are coded by hyperarithmetic sets, being a formula is Π_1^1 while being a formula of some level α (or less) of the hyperarithmetical hierarchy and satisfaction for such formulas are uniformly hyperarithmetical (in the underlying first order structure) at essentially the same level.

Thus if T is a Π_1^1 set of sentences of \mathcal{L}_c , a structure \mathcal{M} (for \mathcal{L}) then being a model of T is a Σ_1^1 property of \mathcal{M} .

A subset Γ of \mathcal{L}_c is Σ_1^1 on \mathcal{L}_c if $\Gamma = \mathcal{L}_c \cap S$ for some $S \in \Sigma_1^1$ or equivalently if $\Gamma \cup \{n | n \notin \mathcal{L}_c\}$ is Σ_1^1 . For example, the set Γ_α of formulas of \mathcal{L}_c of level at most α is Σ_1^1 on \mathcal{L}_c (in fact it is a Δ_1^1 set). As before we have the notion of p being a Γ -n-type. We thus immediately have the appropriate type omitting theorems for computable infinitary languages.

Omitting Types for \mathcal{L}_c

Corollary: If T is a Π_1^1 set of sentences of \mathcal{L}_c , T has a model (and so a countable model), Γ is is Σ_1^1 on \mathcal{L}_c and $\{p_i\}$ is a set of Γ - n_i -types of \mathcal{L}_c none of which is Σ_1^1 on \mathcal{L}_c then there is a model of T not realizing any of the p_i . For example, if $\{p_i\}$ is a set of Γ_{α_i} - n_i -types of \mathcal{L}_c none of which is Σ_1^1 then there is a model of T not realizing any of the p_i .

Omitting Types for \mathcal{L}_c

Corollary: If T is a Π_1^1 set of sentences of \mathcal{L}_c , T has a model (and so a countable model), Γ is is Σ_1^1 on \mathcal{L}_c and $\{p_i\}$ is a set of Γ - n_i -types of \mathcal{L}_c none of which is Σ_1^1 on \mathcal{L}_c then there is a model of T not realizing any of the p_i . For example, if $\{p_i\}$ is a set of Γ_{α_i} - n_i -types of \mathcal{L}_c none of which is Σ_1^1 then there is a model of T not realizing any of the p_i .

Proof: Let S witness that Γ is Σ_1^1 on \mathcal{L}_c , i.e. S is Σ_1^1 and $\Gamma = \mathcal{L}_c \cap S$. If p_i were realized in \mathcal{M} then there would be $a_1, \ldots a_{n_i}$ in \mathcal{M} such that $p_i = \{\varphi(x_1, \ldots x_{n_i}) \in \mathcal{L}_c \cap S | \mathcal{M} \vDash \varphi(a_1, \ldots a_{n_i})\} = \mathcal{L}_c \cap S \cap \{n | n \notin \mathcal{L}_c \lor n \text{ is the code for a formula } \varphi(x_1, \ldots x_{n_i}) \text{ and } \mathcal{M} \vDash \varphi(a_1, \ldots a_{n_i})\}$. As \mathcal{L}_c is Π_1^1 and the required manipulations on formulas are hyperarithmetic and satisfaction in \mathcal{M} is Σ_1^1 , p_i would be Σ_1^1 on \mathcal{L}_c contrary to our assumption.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Modal Logics

We next consider modal logics such as $\mathcal{L}^{\Box,\Diamond}$ with semantics given by Kripke frames $\mathcal{F} = (W, S, \mathcal{C}(p))$ consisting of a set W of worlds p, an accessibility relation S on W and a collection $\{\mathcal{C}(p)|p \in W\}$ of classical structures for a first order language \mathcal{L} .

Modal Logics

We next consider modal logics such as $\mathcal{L}^{\Box,\Diamond}$ with semantics given by Kripke frames $\mathcal{F} = (W, S, \mathcal{C}(p))$ consisting of a set W of worlds p, an accessibility relation S on W and a collection $\{\mathcal{C}(p)|p \in W\}$ of classical structures for a first order language \mathcal{L} .

Here we can derive type omitting theorems that allow the class of classical models considered to be specified by a set of sentences of $\mathcal{L}^{\Box,\diamondsuit}$ but also by specifications on the whole frame that allow us to say, for example, that a modal sentence is forced in some world, every world or some collection of world with some characterization.

Modal Logics

We next consider modal logics such as $\mathcal{L}^{\Box,\Diamond}$ with semantics given by Kripke frames $\mathcal{F} = (W, S, \mathcal{C}(p))$ consisting of a set W of worlds p, an accessibility relation S on W and a collection $\{\mathcal{C}(p)|p \in W\}$ of classical structures for a first order language \mathcal{L} .

Here we can derive type omitting theorems that allow the class of classical models considered to be specified by a set of sentences of $\mathcal{L}^{\Box,\diamondsuit}$ but also by specifications on the whole frame that allow us to say, for example, that a modal sentence is forced in some world, every world or some collection of world with some characterization.

Similarly, we can impose requirements on the accessibility relation in the allowed frames. Some standard such restrictions on the accessibility relation can also be captured by sentences of $\mathcal{L}^{\Box,\Diamond}$ but others are more complicated. For example, frames in which the accessibility relation on worlds is precisely < on \mathbb{N} or some other fixed countable relation or some class of relations with another characterization.

One approach to types here is to consider a Γ as above contained in $\mathcal{L}^{\Box,\Diamond}$ and to say that a Γ -*n*-type q is realized in a frame \mathcal{F} if there is a $p \in W$ and and $a_1, \ldots, a_n \in \mathcal{C}(p)$ such that $p = \{\varphi \in \Gamma | \varphi \text{ has free variables } x_1, \ldots, x_n \& p \Vdash \varphi(a_1, \ldots, a_n)\}.$

One approach to types here is to consider a Γ as above contained in $\mathcal{L}^{\Box,\diamondsuit}$ and to say that a Γ -*n*-type *q* is realized in a frame \mathcal{F} if there is a $p \in W$ and and $a_1, \ldots, a_n \in \mathcal{C}(p)$ such that $p = \{\varphi \in \Gamma | \varphi \text{ has free variables } x_1, \ldots, x_n \& p \Vdash \varphi(a_1, \ldots, a_n)\}.$

Corollary: Let T be a Π_1^1 set consisting of Σ_1^1 sentences about the accessibility relation S and Σ_1^1 sentences about the relation $p \Vdash \varphi$ where p ranges over W and φ ranges over sentences of $\mathcal{L}^{\Box,\Diamond}$ such that there is a countable frame making all of these sentences true. If $\{q_i\}$ is a set of Γ - n_i -types none of which is Σ_1^1 , then there is a frame in which all the sentences of T are true not realizing any of the q_i .

One approach to types here is to consider a Γ as above contained in $\mathcal{L}^{\Box,\diamondsuit}$ and to say that a Γ -*n*-type *q* is realized in a frame \mathcal{F} if there is a $p \in W$ and and $a_1, \ldots, a_n \in \mathcal{C}(p)$ such that $p = \{\varphi \in \Gamma | \varphi \text{ has free variables } x_1, \ldots, x_n \& p \Vdash \varphi(a_1, \ldots, a_n)\}.$

Corollary: Let T be a Π_1^1 set consisting of Σ_1^1 sentences about the accessibility relation S and Σ_1^1 sentences about the relation $p \Vdash \varphi$ where p ranges over W and φ ranges over sentences of $\mathcal{L}^{\Box,\Diamond}$ such that there is a countable frame making all of these sentences true. If $\{q_i\}$ is a set of Γ - n_i -types none of which is Σ_1^1 , then there is a frame in which all the sentences of T are true not realizing any of the q_i .

We can say more by allowing types to restrict the accessibility relation and the whole frame. We can also allow the language and structure at each world to be appropriate for one of the generalized logics above.

<ロト <回ト < 回ト < 回ト < 回ト = 三日

One approach to types here is to consider a Γ as above contained in $\mathcal{L}^{\Box,\diamondsuit}$ and to say that a Γ -*n*-type *q* is realized in a frame \mathcal{F} if there is a $p \in W$ and and $a_1, \ldots, a_n \in \mathcal{C}(p)$ such that $p = \{\varphi \in \Gamma | \varphi \text{ has free variables } x_1, \ldots, x_n \& p \Vdash \varphi(a_1, \ldots, a_n)\}.$

Corollary: Let T be a Π_1^1 set consisting of Σ_1^1 sentences about the accessibility relation S and Σ_1^1 sentences about the relation $p \Vdash \varphi$ where p ranges over W and φ ranges over sentences of $\mathcal{L}^{\Box,\Diamond}$ such that there is a countable frame making all of these sentences true. If $\{q_i\}$ is a set of Γ - n_i -types none of which is Σ_1^1 , then there is a frame in which all the sentences of T are true not realizing any of the q_i .

We can say more by allowing types to restrict the accessibility relation and the whole frame. We can also allow the language and structure at each world to be appropriate for one of the generalized logics above. **Question:** Has anyone studied modal logics where the structures at each node are one for fragments of second order logic as above?

We suggest a logic that captures the notions of being able to extend a structure by adding on new relation symbols satisfying given axioms.

We suggest a logic that captures the notions of being able to extend a structure by adding on new relation symbols satisfying given axioms. Consider an \mathcal{L} for any of the nonmodal logics discussed above. We extend \mathcal{L} by adding on new relation symbols R_n of arity i_n . The language \mathcal{L}^{Ext} consist of all formulas of the form $\exists R_1 \ldots \exists R_m \varphi$ where φ is a formula of \mathcal{L} in the extended language.

We suggest a logic that captures the notions of being able to extend a structure by adding on new relation symbols satisfying given axioms. Consider an \mathcal{L} for any of the nonmodal logics discussed above. We extend \mathcal{L} by adding on new relation symbols R_n of arity i_n . The language \mathcal{L}^{Ext} consist of all formulas of the form $\exists R_1 \ldots \exists R_m \varphi$ where φ is a formula of \mathcal{L} in the extended language. The semantics for \mathcal{L}^{Ext} is the obvious second order one. We define *n*-types *p* and their realization as before.

We suggest a logic that captures the notions of being able to extend a structure by adding on new relation symbols satisfying given axioms. Consider an \mathcal{L} for any of the nonmodal logics discussed above. We extend \mathcal{L} by adding on new relation symbols R_n of arity i_n . The language \mathcal{L}^{Ext} consist of all formulas of the form $\exists R_1 \ldots \exists R_m \varphi$ where φ is a formula of \mathcal{L} in the extended language. The semantics for \mathcal{L}^{Ext} is the obvious second order one. We define *n*-types *p* and their realization as before.

Corollary: If T is a Π_1^1 set of formulas of $\mathcal{L}^{E\times t}$ with a model, Γ a Σ_1^1 set of formulas of $\mathcal{L}^{E\times t}$ as before and $\{p_i\}$ is a set of n_i -types of $\mathcal{L}^{E\times t}$ none of which is Σ_1^1 then there is a model \mathcal{M} of T in which no p_i is realized.

We suggest a logic that captures the notions of being able to extend a structure by adding on new relation symbols satisfying given axioms. Consider an \mathcal{L} for any of the nonmodal logics discussed above. We extend \mathcal{L} by adding on new relation symbols R_n of arity i_n . The language \mathcal{L}^{Ext} consist of all formulas of the form $\exists R_1 \ldots \exists R_m \varphi$ where φ is a formula of \mathcal{L} in the extended language. The semantics for \mathcal{L}^{Ext} is the obvious second order one. We define *n*-types *p* and their realization as before.

Corollary: If T is a Π_1^1 set of formulas of $\mathcal{L}^{E\times t}$ with a model, Γ a Σ_1^1 set of formulas of $\mathcal{L}^{E\times t}$ as before and $\{p_i\}$ is a set of n_i -types of $\mathcal{L}^{E\times t}$ none of which is Σ_1^1 then there is a model \mathcal{M} of T in which no p_i is realized.

Basically, this says that, with our usual restrictions on the \mathcal{L} -theories \mathcal{T} , that there is a model which can be extended by relations satisfying additional axioms involving the new relations but cannot be further extended to one satisfying any one of a collection of sentences p_i in \mathcal{L}^{Ext}

・ロン ・四 ・ ・ ヨン ・ ヨン

We suggest a logic that captures the notions of being able to extend a structure by adding on new relation symbols satisfying given axioms. Consider an \mathcal{L} for any of the nonmodal logics discussed above. We extend \mathcal{L} by adding on new relation symbols R_n of arity i_n . The language \mathcal{L}^{Ext} consist of all formulas of the form $\exists R_1 \ldots \exists R_m \varphi$ where φ is a formula of \mathcal{L} in the extended language. The semantics for \mathcal{L}^{Ext} is the obvious second order one. We define *n*-types *p* and their realization as before.

Corollary: If T is a Π_1^1 set of formulas of $\mathcal{L}^{E\times t}$ with a model, Γ a Σ_1^1 set of formulas of $\mathcal{L}^{E\times t}$ as before and $\{p_i\}$ is a set of n_i -types of $\mathcal{L}^{E\times t}$ none of which is Σ_1^1 then there is a model \mathcal{M} of T in which no p_i is realized.

Basically, this says that, with our usual restrictions on the \mathcal{L} -theories T, that there is a model which can be extended by relations satisfying additional axioms involving the new relations but cannot be further extended to one satisfying any one of a collection of sentences p_i in \mathcal{L}^{Ext} **Question:** Has anyone seen a logic like this? Do any "practical" instances or applications come to mind?

Complexity of the Reals and Models

Finally, we point out that the complexity of the G of our main Theorem and the version for sequences and so of many of the Corollaries can be as low as possible.

Complexity of the Reals and Models

Finally, we point out that the complexity of the G of our main Theorem and the version for sequences and so of many of the Corollaries can be as low as possible.

Theorem: If \mathcal{K} is a nonempty Σ_1^1 class reals and X_n a countable sequence of reals uniformly Δ_1^1 (recursive) in O none of which is Σ_1^1 , then there is a $G \in \mathcal{K}$ with $G \Delta_1^1$ (recursive) in O such that no X_n is Σ_1^1 in G. Indeed, Gcan be chosen to be of strictly smaller hyperdegree than O, i.e. O is not Δ_1^1 in G. As in Theorem for sequences of reals, if we assume only that the X_n are not Δ_1^1 then we may conclude that none is Δ_1^1 in G.

Complexity of the Reals and Models

Finally, we point out that the complexity of the G of our main Theorem and the version for sequences and so of many of the Corollaries can be as low as possible.

Theorem: If \mathcal{K} is a nonempty Σ_1^1 class reals and X_n a countable sequence of reals uniformly Δ_1^1 (recursive) in O none of which is Σ_1^1 , then there is a $G \in \mathcal{K}$ with $G \Delta_1^1$ (recursive) in O such that no X_n is Σ_1^1 in G. Indeed, Gcan be chosen to be of strictly smaller hyperdegree than O, i.e. O is not Δ_1^1 in G. As in Theorem for sequences of reals, if we assume only that the X_n are not Δ_1^1 then we may conclude that none is Δ_1^1 in G.

As a sample application we give a common generalization combining both KBT and GBT.

Kleene and Gandy Basis Theorems

Note that by a result of Spector's, $\omega_1^{CK} < \omega_1^A$ implies that O is Δ_1^1 in A (indeed there is a pair of Σ_1^1 formulas $\varphi(X, n)$ and $\theta(X, n)$ which define O and its complement for any X with $\omega_1^X > \omega_1^{CK}$), we thus simultaneously have the Kleene and Gandy basis theorem for Σ_1^1 classes as well.

Kleene and Gandy Basis Theorems

Note that by a result of Spector's, $\omega_1^{CK} < \omega_1^A$ implies that O is Δ_1^1 in A (indeed there is a pair of Σ_1^1 formulas $\varphi(X, n)$ and $\theta(X, n)$ which define O and its complement for any X with $\omega_1^X > \omega_1^{CK}$), we thus simultaneously have the Kleene and Gandy basis theorem for Σ_1^1 classes as well.

Theorem: Every nonempty Σ_1^1 class of reals \mathcal{K} contains an element A recursive in and of strictly smaller hyperdegree than O. In particular, one with $\omega_1^A = \omega_1^{CK}$.

Theorem: If a class \mathcal{A} of reals is Σ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{B} of reals then it is Σ_1^1 .

The proof here also uses Gandy-Harrington forcing but with a real forcing argument exploiting some nontrivial facts about the notion of forcing. It also uses several theorems of effective descriptive set theory.

Theorem: If a class \mathcal{A} of reals is Σ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{B} of reals then it is Σ_1^1 .

The proof here also uses Gandy-Harrington forcing but with a real forcing argument exploiting some nontrivial facts about the notion of forcing. It also uses several theorems of effective descriptive set theory.

If we only want the class to not be Δ_1^1 in a real in \mathcal{B} then there is a much simpler proof more like that of the one for reals that also extends to sequences.

Theorem: If a class \mathcal{A} of reals is Σ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{B} of reals then it is Σ_1^1 .

The proof here also uses Gandy-Harrington forcing but with a real forcing argument exploiting some nontrivial facts about the notion of forcing. It also uses several theorems of effective descriptive set theory.

If we only want the class to not be Δ_1^1 in a real in \mathcal{B} then there is a much simpler proof more like that of the one for reals that also extends to sequences.

Theorem: If \mathcal{B} is a nonempty Σ_1^1 class of reals and \mathcal{X}_n a countable sequence of classes of reals none of which is Δ_1^1 , then there is a $G \in \mathcal{B}$ such that no \mathcal{X}_n is Δ_1^1 in G.

Theorem: If a class \mathcal{A} of reals is Σ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{B} of reals then it is Σ_1^1 .

The proof here also uses Gandy-Harrington forcing but with a real forcing argument exploiting some nontrivial facts about the notion of forcing. It also uses several theorems of effective descriptive set theory.

If we only want the class to not be Δ_1^1 in a real in \mathcal{B} then there is a much simpler proof more like that of the one for reals that also extends to sequences.

Theorem: If \mathcal{B} is a nonempty Σ_1^1 class of reals and \mathcal{X}_n a countable sequence of classes of reals none of which is Δ_1^1 , then there is a $G \in \mathcal{B}$ such that no \mathcal{X}_n is Δ_1^1 in G.

Corollary: Any class \mathcal{A} of reals which is Δ_1^1 in every member of a Σ_1^1 class \mathcal{B} of reals is Δ_1^1 .

Theorem: If a class \mathcal{A} of reals is Σ_1^1 in every member of a nonempty Σ_1^1 class \mathcal{B} of reals then it is Σ_1^1 .

The proof here also uses Gandy-Harrington forcing but with a real forcing argument exploiting some nontrivial facts about the notion of forcing. It also uses several theorems of effective descriptive set theory.

If we only want the class to not be Δ_1^1 in a real in \mathcal{B} then there is a much simpler proof more like that of the one for reals that also extends to sequences.

Theorem: If \mathcal{B} is a nonempty Σ_1^1 class of reals and \mathcal{X}_n a countable sequence of classes of reals none of which is Δ_1^1 , then there is a $G \in \mathcal{B}$ such that no \mathcal{X}_n is Δ_1^1 in G.

Corollary: Any class \mathcal{A} of reals which is Δ_1^1 in every member of a Σ_1^1 class \mathcal{B} of reals is Δ_1^1 .

Question: Does the last theorem hold with Σ_1^1 replaced by Δ_1^1 ?

Question: Are there any descriptive set theory applications of these results?

We use the language of Gandy-Harrington Forcing but essentially none of the machinery.

We use the language of Gandy-Harrington Forcing but essentially none of the machinery.

Forcing conditions are nonempty Σ^1_1 classes ${\cal L}$ of reals with set containment as extension.

We use the language of Gandy-Harrington Forcing but essentially none of the machinery.

Forcing conditions are nonempty Σ^1_1 classes ${\cal L}$ of reals with set containment as extension.

We view the Σ_1^1 formulas $\varphi(G, n)$ as of the form $\exists F \forall x R(G \upharpoonright x, F \upharpoonright x, x, n)$ with R recursive. We say that $\mathcal{L} \Vdash \varphi(G, n)$ if $(\forall Z \in \mathcal{L})(\varphi(Z, n))$. If, as usual, we say $\mathcal{L} \vDash \neg \varphi(G, n)$ if $(\forall \hat{\mathcal{L}} \subseteq \mathcal{L})(\hat{\mathcal{L}} \nvDash \varphi(G, n))$, this definition is then equivalent to $(\forall Z \in \mathcal{L})(\neg \varphi(Z, n))$. The point here is that if there is a $Z \in \mathcal{L}$ such that $\varphi(Z, n)$ then $\hat{\mathcal{L}} = \mathcal{L} \cap \{Z | \varphi(Z, n)\}$ is a nonempty extension of \mathcal{L} which obviously forces $\varphi(G, n)$.

We use the language of Gandy-Harrington Forcing but essentially none of the machinery.

Forcing conditions are nonempty Σ^1_1 classes ${\cal L}$ of reals with set containment as extension.

We view the Σ_1^1 formulas $\varphi(G, n)$ as of the form $\exists F \forall x R(G \upharpoonright x, F \upharpoonright x, x, n)$ with R recursive. We say that $\mathcal{L} \Vdash \varphi(G, n)$ if $(\forall Z \in \mathcal{L})(\varphi(Z, n))$. If, as usual, we say $\mathcal{L} \vDash \neg \varphi(G, n)$ if $(\forall \hat{\mathcal{L}} \subseteq \mathcal{L})(\hat{\mathcal{L}} \nvDash \varphi(G, n))$, this definition is then equivalent to $(\forall Z \in \mathcal{L})(\neg \varphi(Z, n))$. The point here is that if there is a $Z \in \mathcal{L}$ such that $\varphi(Z, n)$ then $\hat{\mathcal{L}} = \mathcal{L} \cap \{Z | \varphi(Z, n)\}$ is a nonempty extension of \mathcal{L} which obviously forces $\varphi(G, n)$.

We now list all the Σ_1^1 formulas $\Theta_k(G, n)$. These are the formulas that could potentially define the reals Σ_1^1 in any G.

Plan of Proof

We consider an X which is a candidate for being Σ_1^1 in every $G \in \mathcal{K}$. We build a sequence \mathcal{L}_k of conditions beginning with $\mathcal{L}_0 = \mathcal{K} = \{G | \exists F_0 \forall x R_{m_0} (G \upharpoonright x, F_0 \upharpoonright x, x)\}$ as well as initial segments γ_k (of length at least k) of our intended G and $\delta_{i,k}$ of witnesses F_i (of length at least k) showing that $G \in \mathcal{L}_k$. More precisely, each \mathcal{L}_k will be of the form $G \supset \gamma_k \& \forall i \le k \exists F_i \supset \delta_{i,k} \forall x R_{m_i} (G \upharpoonright x, F_i \upharpoonright x, x)$ for some recursive R_{m_i} (independent of k).

Plan of Proof

We consider an X which is a candidate for being Σ_1^1 in every $G \in \mathcal{K}$. We build a sequence \mathcal{L}_k of conditions beginning with $\mathcal{L}_0 = \mathcal{K} = \{G | \exists F_0 \forall x R_{m_0} (G \upharpoonright x, F_0 \upharpoonright x, x)\}$ as well as initial segments γ_k (of length at least k) of our intended G and $\delta_{i,k}$ of witnesses F_i (of length at least k) showing that $G \in \mathcal{L}_k$. More precisely, each \mathcal{L}_k will be of the form $G \supset \gamma_k \& \forall i \le k \exists F_i \supset \delta_{i,k} \forall x R_{m_i} (G \upharpoonright x, F_i \upharpoonright x, x)$ for some recursive R_{m_i} (independent of k).

Thus, if we successfully continue our construction keeping \mathcal{L}_k nonempty for each k then the $F_i = \lim_k \delta_{i,k}$ for $i \leq k$ will witness that $G = \lim_k \gamma_k$ is in every \mathcal{L}_k as we guarantee that $R_{m_i}(\gamma_k \upharpoonright x, \delta_{i,k} \upharpoonright x, x)$ holds for every i, x < k and every k.

イロト 不得下 イヨト イヨト 二日

The Construction

We begin with $\gamma_0 = \emptyset = \delta_{0,0}$ and R_{m_0} as specified by \mathcal{K} . So our G will at least be in \mathcal{K} as desired. Suppose we have defined γ_j and $\delta_{i,j}$ for $j, i \leq k$ and wish to define \mathcal{L}_{k+1} , γ_{k+1} and $\delta_{i,k+1}$ for $i \leq k+1$ so as to prevent X from being Σ_1^1 in G via Θ_k . We ask if there is an $m \in \omega$ and a nonempty $\mathcal{L} \subseteq \mathcal{L}_k$ such that

- 1. $m \notin X$ and $\mathcal{L} \Vdash \Theta_k(G, m)$ or
- 2. $m \in X$ and $\mathcal{L} \Vdash \neg \Theta_k(G, m)$

The Construction

We begin with $\gamma_0 = \emptyset = \delta_{0,0}$ and R_{m_0} as specified by \mathcal{K} . So our G will at least be in \mathcal{K} as desired. Suppose we have defined γ_j and $\delta_{i,j}$ for $j, i \leq k$ and wish to define \mathcal{L}_{k+1} , γ_{k+1} and $\delta_{i,k+1}$ for $i \leq k+1$ so as to prevent X from being Σ_1^1 in G via Θ_k . We ask if there is an $m \in \omega$ and a nonempty $\mathcal{L} \subseteq \mathcal{L}_k$ such that

1.
$$m \notin X$$
 and $\mathcal{L} \Vdash \Theta_k(G, m)$ or

2.
$$m \in X$$
 and $\mathcal{L} \Vdash \neg \Theta_k(G, m)$

Suppose there is such an \mathcal{L} of the form $\exists F_{k+1} \forall x R_{m_{k+1}} (G \upharpoonright x, F_{k+1} \upharpoonright x, x)$. As $\mathcal{L} \subseteq \mathcal{L}_k$ is nonempty we can choose $\gamma_{k+1} \supset \gamma_k$ and $\delta_{i,k+1} \supset \delta_{i,k}$ for $i \leq k$ and some $\delta_{k+1,k+1}$ all of length at least k+1 such that \mathcal{L}_{k+1} as given by $G \supset \gamma_{k+1} \& (\forall i \leq k+1)(\exists F_i \supset \delta_{i,k+1})(\forall x R_{m_i})(G \upharpoonright x, F_i \upharpoonright x, x)$ is a nonempty subclass of \mathcal{L} (and so, in particular, $R_{m_i}(\gamma_{k+1} \upharpoonright x, \delta_{i,k+1} \upharpoonright x, x)$ for every $i, x \leq k+1$). We can now continue our induction.

First Outcome: All successes

Note that if we can successfully define nonempty \mathcal{L}_k in this way for every k then we build a $G = \lim_k \gamma_k$ and $F_i = \lim_k \delta_{i,k}$ for each i such that $\forall x R_{m_i} (G \upharpoonright x, F_i \upharpoonright x, x)$. In particular $\forall x R_{m_0} (G \upharpoonright x, F_0 \upharpoonright x, x)$ and so $G \in \mathcal{K}$. Similarly, $G \in \mathcal{L}_k$ for every k > 0. If X is $\Sigma_1^1(G)$ as assumed, then $X = \{n | \Theta_k(G, n)\}$ for some k. We consider the construction at stage k + 1 and the \mathcal{L} chosen at that stage. If we were in case (1) then as $\mathcal{L} \Vdash \Theta_k(G,m)$ and $G \in \mathcal{L}_{k+1}$, $\Theta(G,m)$ is true but $m \notin X$ for a contradiction. Similarly, if we were in case (2), as $\mathcal{L} \Vdash \neg \Theta_k(G,m)$ and $G \in \mathcal{L}_{k+1}$, $\neg \Theta(G,m)$ is true but $m \in X$ again for a contraction.

Second Outcome: A First Failure

Thus we can assume that there is some first stage k + 1 at which there are no m and $\mathcal{L} \subseteq \mathcal{L}_k$ as required in the construction. In this case we claim that X is Σ_1^1 as desired. Indeed, we claim that X is defined as a Σ_1^1 real by $m \in X \Leftrightarrow (\exists Z \in \mathcal{L}_k) \Theta_k(Z, m)$. To see this suppose first that $(\exists Z \in \mathcal{L}_k) \Theta_k(Z, m)$. Then \mathcal{L} as defined by $\mathcal{L}_k \And \Theta_k(G, m)$ is a nonempty Σ_1^1 class such that $\mathcal{L} \Vdash \Theta_k(G, m)$ and so we would have $m \in X$ as desired by the assumed failure of (1) at stage k + 1 of the construction. On the other hand, if $(\forall Z \in \mathcal{L}_k)(\neg \Theta_k(Z, m)$ then $\mathcal{L}_k \Vdash \neg \Theta_k(G, m)$ and so by the failure of (2) at stage k + 1 of the construction, $m \notin X$ as desired.

Proof for Sequences Version

Repeat the proof of the Main Theorem but at step $k + 1 = \langle n, j \rangle$ of the construction replace X by X_n and Θ_k by Θ_j . If we successfully pass through all steps k then the previous argument shows that no X_n is Σ_1^1 in $G \in \mathcal{K}$. On the other hand, if the construction terminates at step $k + 1 = \langle n, j \rangle$ then the previous argument shows that X_n is defined as a Σ_1^1 real by $m \in X_n \Leftrightarrow (\exists Z \in \mathcal{L}_k) \Theta_j(Z, m)$ for a contradiction. For the Δ_1^1 version, simply consider the sequence Y_n where $Y_n = X_n$ if X_n is not Σ_1^1 and Y_n is the complement of X_n otherwise (i.e. X_n is not Π_1^1). As now no Y_n is $\Sigma_1^1(G)$, no X_n is $\Delta_1^1(G)$.

Complexity Calculations

Suppose we are at step $k = \langle n, j \rangle$ of the construction. We know that either there is an $m \in X_n$ such that $(\forall Z \in \mathcal{L}_k)(\neg \Theta_k(Z, m))$ or an $m \notin X_n$ such that $(\exists Z \in \mathcal{L}_k)(\Theta_k(Z, m))$. As the X_n are uniformly Δ_1^1 (recursive) in O, and the rest of the conditions considered in the construction are either Σ_1^1 or Π_1^1 , O can hyperarithmetically (recursively) decide which case to apply. As choosing the $\gamma_{k+1} \supset \gamma_k$ and $\delta_{i,k+1} \supset \delta_{i,k}$ for $i \leq k$ and so \mathcal{L}_{k+1} now only require finding ones for which the corresponding Σ_1^1 class \mathcal{L}_{k+1} is nonempty, this step is also recursive in O. Of course, as we can add O onto the list of X_n , we then guarantee that O is not Σ_1^1 in G and so, of course, not Δ_1^1 in G as required.