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Preamble.

In this talk I discuss some work in progress which involves both

hyperdegrees and Turing degrees. This is in collaboration with my

current Ph.D. student, Hayden Jananthan, at Vanderbilt University.

I start with Turing degree aspects of the Gandy Basis Theorem. From

there I move along to hyperarithmetical analogs of several well-known

theorems including the Jockusch-Soare Jump Inversion Theorem, the

Posner-Robinson Join Theorem, and the Jockusch-Shore Pseudojump

Inversion Theorem.

There are a number of open questions here, and I am hoping that some

of you will help us solve them at this workshop.
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Part 1: Refinements of the Gandy Basis Theorem

A Σ1
1 class is a set S ⊆ {0,1}N of the form S = {X | ∃Y A(X,Y )} where

X and Y range over {0,1}N and A(X,Y ) is an arithmetical predicate.

Kleene Basis Theorem (1959). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that X ≤T O.

Here ≤T denotes Turing reducibility, i.e., X ≤T Y if and only if

X ∈ ∆
0,Y
1 . And O is Kleene’s O. The key property of O is that

it is a complete Π1
1 subset of N.

Gandy Basis Theorem (1960). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that X <hyp O.

Here ≤hyp denotes hyperarithmetical reducibility, i.e., X ≤hyp Y if and

only if X ∈ ∆
1,Y
1 . And of course X <hyp Y means that X ≤hyp Y and

Y �hyp X. And X ≡hyp Y means that X ≤hyp Y and Y ≤hyp X. And

a hyperdegree is an equivalence class under ≡hyp.
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For X ∈ {0,1}N the hyperjump of X is defined as OX = Kleene’s O

relative to X, i.e., a complete Π
1,X
1 subset of N. This is analogous to

the Turing jump of X, defined as HX = the Halting Problem relative to

X, i.e., a complete Σ
0,X
1 subset of N.

A theorem of Spector 1955 tells us that X <hyp O implies OX ≡hyp O.

In other words, in the world of hyperdegrees, every “degree” less than

the “jump” of the empty set is “low.” This is in contrast to the world

of Turing degrees, where the situation is much more complicated.

Gandy’s proof of the Gandy Basis Theorem also gives X ≤T O.

Combining these results of Spector and Gandy, we obtain

the following refinement of the Kleene Basis Theorem.

Theorem (Gandy, 1960). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that X ≤T O and OX ≡hyp O.

It is appropriate to attribute this theorem to Gandy, and all of the

relevant textbooks do so. But now consider the following apparently

stronger theorem.

Theorem (folklore, ????). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that OX ≡T O.
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Theorem (folklore, ????). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that OX ≡T O.

This “folklore” theorem was unknown to me until I proved it myself, last

September, in some ongoing proof-theoretical work with Gerhard Jäger

and Michael Rathjen. But later I discovered that the “folklore” theorem

is known to many people. And still later I noticed that the “folklore”

theorem appears – without proof or references – as Exercise 2.5.6 in the

book Recursion Theory, by Chi Tat Chong and Liang Yu, 2015. Other

than this, I know of no printed statement of the “folklore” theorem.

A straightforward way to prove the “folklore” theorem is by means of

forcing with nonempty Σ1
1 classes. This technique was introduced by

Harrington in 1976 and is well known in descriptive set theory. My first

proof of the “folklore” theorem used Harrington’s technique, but later I

devised another proof which is more in the spirit of Gandy and Spector.
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We are considering two theorems.

Theorem 1 (Gandy, 1960). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that X ≤T O and OX ≡hyp O.

Theorem 2 (folklore, ????). Let S be a nonempty Σ1
1 class, then

we can find X ∈ S such that OX ≡T O.

Comparing these two theorems, it is natural to ask whether the

conclusion of Theorem 1 implies the conclusion of Theorem 2.

In other words:

Question. Do X ≤T O and OX ≡hyp O together imply OX ≡T O?

Or more generally:

Question. Does OX ≡hyp O ⊕X imply OX ≡T O ⊕X?

Of course the answer to these questions must be “No.” But does

anybody have a counterexample??? Please help us ....
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The Gandy Basis Theorem may be viewed as a hyperarithmetical analog

of the celebrated Low Basis Theorem.

Low Basis Theorem (Jockusch & Soare, 1971). Let P ⊆ {0,1}N

be a nonempty Π0
1 class, then we can find X ∈ P such that HX ≡T H.

In the same paper Jockusch and Soare obtained the following

generalization, which also includes the Friedberg Jump Theorem.

Theorem (Jockusch & Soare, 1971). Let P ⊆ {0,1}N

be a nonempty Π0
1 class with no recursive elements. Then for all Y

we can find X ∈ P such that HX ≡T H ⊕X ≡T H ⊕ Y .

We now present the analogous generalization of the Gandy Basis

Theorem, and of its “folklore” refinement.

Theorem (Jananthan & Simpson, 2018). Let S be a nonempty

Σ1
1 class with no hyperarithmetical elements. Then for all Y

we can find X ∈ S such that OX ≡T O ⊕X ≡T O ⊕ Y .

The special case where S is omitted is due to MacIntyre, 1977.

MacIntyre’s proof used Cohen forcing, while our proof uses

Harrington’s technique of forcing with Σ1
1 classes.
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Part 2: Posner-Robinson and Pseudojump Inversion

Another extension of the Friedberg Jump Theorem

is due to D. Posner and R. W. Robinson.

Posner-Robinson Theorem, 1981.

For all Y and all non-recursive Z ≤T H ⊕ Y ,

we can find X such that Z ⊕X ≡T HX ≡T H ⊕X ≡T H ⊕ Y .

Here is the hyperjump analog of the Posner-Robinson Theorem.

Theorem (Slaman, Woodin, . . . .)

For all Y and all non-hyperarithmetical Z ≤T O ⊕ Y ,

we can find X such that Z ⊕X ≡T OX ≡T O ⊕X ≡T O ⊕ Y .

This result is due to Slaman (unpublished) and Woodin (unpublished).

Slaman emailed a sketch of his proof to Jananthan and me, and we have

written it up and plan to publish it. The proof uses Kumabe-Slaman

forcing over a countable non-well-founded model of ZFC.
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Yet another extension of Friedberg’s Jump Inversion Theorem is

the Pseudojump Inversion Theorem, due to Jockusch and Shore.

A pseudojump operator is an operator of the form U : X 7→ UX ⊕X

where X ranges over {0,1}N and UX ⊆ N is uniformly Σ
0,X
1 , i.e.,

uniformly recursively enumerable relative to X.

Pseudojump Inversion Theorem (Jockusch & Shore, 1983).

For all Y and all pseudojump operators U ,

we can find X such that UX ⊕X ≡T H ⊕X ≡T H ⊕ Y .

The proof of this theorem follows that of the original

Jump Inversion Theorem, due to Friedberg 1957.

Let us define a pseudohyperjump operator to be the obvious

hyperarithmetical analog of a pseudojump operator, i.e., an operator of

the form V : X 7→ V X ⊕X where V X ⊆ N is uniformly Π
1,X
1 . It seems

natural to hope for a Pseudohyperjump Inversion Theorem where the

conclusion would be that V X ⊕X ≡T O ⊕X ≡T O ⊕ Y . But so far we

have not been able to prove this.
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In light of Jockusch-Soare 1971, one might try to choose the X’s

(in both Posner-Robinson and Pseudojump Inversion) such that X ∈ P

for a given nonempty Π0
1 class P ⊆ {0,1}N with no recursive elements.

Jananthan and I have some partial results, as follows.

First, let P ⊆ {0,1}N be a nonempty Π0
1 class which is

Medvedev complete, e.g., P = {X | X is a completion of PA}.

Then P has the following properties:

(1) For all Y and all non-recursive Z ≤T H ⊕ Y , we can find an X ∈ P

satisfying the conclusion of the Posner-Robinson Theorem, i.e.,

Z ⊕X ≡T HX ≡T H ⊕X ≡T H ⊕ Y .

(2) For all Y and all pseudojump operators U , we can find an X ∈ P

satisfying the conclusion of the Pseudojump Inversion Theorem, i.e.,

UX ⊕X ≡T H ⊕X ≡T H ⊕ Y .

On the other hand, there is a nonempty Π0
1 class P ⊆ {0,1}N such that

no X ∈ P is recursive but every finite sequence X1, . . . , Xn ∈ P , n ≥ 1, is

generalized low, i.e., HX1⊕···⊕Xn ≡T H ⊕X1 ⊕ · · · ⊕Xn. Such a P cannot

have property (1) or property (2).
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An open problem is to characterize the Π0
1 classes P ⊆ {0,1}N

which have properties (1) and/or (2).

Another open problem is to characterize the Σ1
1 classes S which have

the hyperarithmetical analogs of properties (1) and/or (2).

Thank you for your attention!
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