Finding Randomness

Theodore A. Slaman

University of California Berkeley

Introduction

- 1. Finding Randomness
 - 1.1 Lebesgue measure
 - 1.1.1 Formulated by measure
 - 1.1.2 Formulated by compressibility
 - 1.2 Arbitrary measures
 - 1.3 Continuous measures
- 2. Finding Better Randomness
 - 2.1 Measures with the mass distribution property and Hausdorff dimension
 - 2.2 Measures with well-behaved Fourier transforms and Fourier dimension
 - 2.3 Diophantine Approximation
 - 2.3.1 Randomness formulated by normality
 - 2.3.2 Randomness formulated by irrationality exponent

Lebesgue Measure

formulated by measure

Definition

A real number ξ is *Martin-Löf random* if it does not belong to any effectively-null G_{δ} set. Precisely, if $(O_n : n \in \mathbb{N})$ is a uniformly computably enumerable sequence of open sets such that for all n, O_n has measure less than $1/2^n$, then $\xi \notin \bigcap_{n \in \mathbb{N}} O_n$.

This is not mysterious: Identify a family of sets of measure 0, and say that ξ is random if it does not belong to any set in the family.

Randomness

formulated by compressibility

Definition

A real number ξ is *algorithmically incompressible* iff there is a *C* such that for all ℓ , $K(\xi \upharpoonright \ell) > \ell - C$, where *K* denotes prefix-free Kolmogorov complexity and $\xi \upharpoonright \ell$ denotes the first ℓ bits in the base 2 representation of ξ .

This is also not mysterious: Say that ξ is incompressible when for all ℓ , it takes ℓ bits of information to describe $\xi \upharpoonright \ell$. One can interpret *description* in a variety of ways and obtain a reasonable characteristic of ξ .

Schnorr's Theorem

Theorem (Schnorr 1973)

 ξ is Martin-Löf random iff it is algorithmically incompressible.

For the rest of this lecture, I will discuss joint work with Jan Reimann. The collaboration excludes the inaccuracies of this presentation, all of which I claim for myself.

For the rest of this lecture, I will discuss joint work with Jan Reimann. The collaboration excludes the inaccuracies of this presentation, all of which I claim for myself.

Definition

A representation m of a probability measure μ on 2^{ω} provides rational approximations to each $\mu([\sigma])$ meeting any required accuracy.

For the rest of this lecture, I will discuss joint work with Jan Reimann. The collaboration excludes the inaccuracies of this presentation, all of which I claim for myself.

Definition

A representation m of a probability measure μ on 2^{ω} provides rational approximations to each $\mu([\sigma])$ meeting any required accuracy.

Definition

 $X \in 2^{\omega}$ is *n*-random relative to a representation *m* of μ if and only if it does not belong to any $m^{(n-1)}$ -presented G_{δ} set of μ -measure 0.

For the rest of this lecture, I will discuss joint work with Jan Reimann. The collaboration excludes the inaccuracies of this presentation, all of which I claim for myself.

Definition

A representation m of a probability measure μ on 2^{ω} provides rational approximations to each $\mu([\sigma])$ meeting any required accuracy.

Definition

 $X \in 2^{\omega}$ is *n*-random relative to a representation *m* of μ if and only if it does not belong to any $m^{(n-1)}$ -presented G_{δ} set of μ -measure 0.

We will drop the explicit reference to presentations and speak of randomness relative to μ .

Arbitrary Measures and 1-Randomness

Theorem

For $X \in 2^{\omega}$, the following are equivalent.

- ► X is not recursive.
- There is a measure μ such that μ({X}) = 0 and X is 1-random relative to μ.

Arbitrary Measures and 1-Randomness

Theorem

For $X \in 2^{\omega}$, the following are equivalent.

- > X is not recursive.
- There is a measure μ such that μ({X}) = 0 and X is 1-random relative to μ.

Comments on the construction of μ , given X not recursive:

- Apply the Posner-Robinson Theorem to find G such that $X + G \equiv G'$.
- ▶ Note that $G' \equiv_T R$, where R is 1-random relative to G.
- By compactness, convert the Turing equivalence between X and R into a push-forward of Lebesgue measure to another measure μ so that R's 1-randomness transforms into X's 1-randomness for μ.

Except for the first few values of *n*, atoms in a measure μ do not contribute to the analysis of μ -randomness for non-atoms.

Except for the first few values of *n*, atoms in a measure μ do not contribute to the analysis of μ -randomness for non-atoms.

Theorem

For all $n \ge 1$, for all but countably many $X \in 2^{\omega}$, there is a continuous measure μ such that X is n-random relative to μ .

Theorem

For all k, the previous theorem cannot be proven in $ZF^- + k$ -many iterates of the power set of ω .

degree theoretically characterizing relative randomness

First, we translate the condition that there exist a μ for which X is random into a condition on X's being relatively Turing equivalent to a random sequence.

degree theoretically characterizing relative randomness

First, we translate the condition that there exist a μ for which X is random into a condition on X's being relatively Turing equivalent to a random sequence.

Definition

- For X, Y, and Z in 2^ω, we write X ≡_{T,Z} Y to indicate that there are Turing reductions (i.e. representations of continuous functions) Φ and Ψ which are recursive in Z such that Φ(X) = Y and Ψ(Y) = X.
- When Φ and Ψ have domain 2^{ω} , we write $X \equiv_{tt,Z} Y$.

degree theoretically characterizing relative randomness

First, we translate the condition that there exist a μ for which X is random into a condition on X's being relatively Turing equivalent to a random sequence.

Definition

- For X, Y, and Z in 2^ω, we write X ≡_{T,Z} Y to indicate that there are Turing reductions (i.e. representations of continuous functions) Φ and Ψ which are recursive in Z such that Φ(X) = Y and Ψ(Y) = X.
- When Φ and Ψ have domain 2^{ω} , we write $X \equiv_{tt,Z} Y$.

Turing reductions correspond to continuous functions defined on subsets of 2^{ω} . Truth-table (*tt*) reductions correspond to continuous functions defined on all of 2^{ω} .

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

There is a continuous measure μ which is recursive in Z such that X is n-random for μ and Z.

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

- There is a continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is a continuous dyadic measure μ which is recursive in Z such that X is n-random for μ and Z.

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

- There is a continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is a continuous dyadic measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is an R such that R is n-random relative to Z and an order preserving homeomorphism f : 2^ω → 2^ω such that f is recursive in Z and f(R) = X.

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

- There is a continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is a continuous dyadic measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is an R such that R is n-random relative to Z and an order preserving homeomorphism f : 2^ω → 2^ω such that f is recursive in Z and f(R) = X.
- There is an R such that R is n-random relative to Z and $X \equiv_{tt,Z} R$.

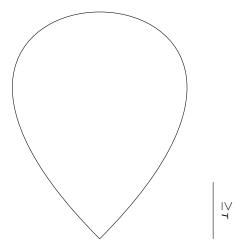
In order to conclude that X is *n*-random relative to some continuous measure, it is sufficient to find a Z relative to which X is tt-equivalent to some *n*-random sequence R.

In order to conclude that X is *n*-random relative to some continuous measure, it is sufficient to find a Z relative to which X is tt-equivalent to some *n*-random sequence R.

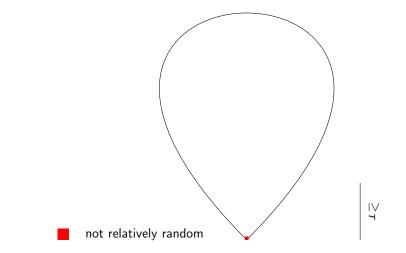
Example

If X is recursive, then X is not 1-random relative to any continuous measure.

 2^{ω} ordered by $\geq_{\mathcal{T}}$



2^ω ordered by $\geq_{\mathcal{T}}$



Theorem (Martin, Borel Determinacy)

Suppose that \mathcal{B} is a Borel subset of 2^{ω} and that for every A there is a Y such that $Y \ge_T A$ and $Y \in \mathcal{B}$. There is a $B \in 2^{\omega}$ such that for every $X \ge_T B$ there is a Y such that $Y \equiv_T X$ and $Y \in B$.

Theorem (Martin, Borel Determinacy)

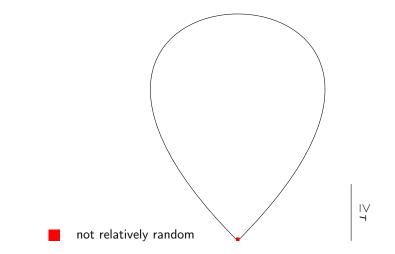
Suppose that \mathcal{B} is a Borel subset of 2^{ω} and that for every A there is a Y such that $Y \ge_T A$ and $Y \in \mathcal{B}$. There is a $B \in 2^{\omega}$ such that for every $X \ge_T B$ there is a Y such that $Y \equiv_T X$ and $Y \in B$.

Corollary

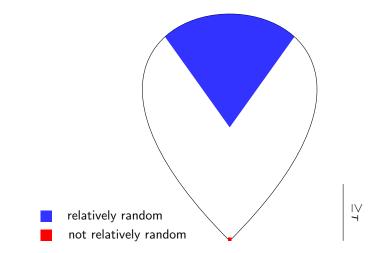
For any $n \ge 1$, there is a B such that for all $X \ge_T B$, there is a continuous measure μ such that X is n-random relative to μ .

- ► If X is Turing equivalent to an (n + 1)-random relative to Z then X is tt-equivalent to an n-random relative to Z'.
- ► Consider the set B of Y's of the form A + R, where R is (n+1)-random relative to A. These are all n-random relative to some continuous measure.

2^ω ordered by $\geq_{\mathcal{T}}$



2^{ω} ordered by $\geq_{\mathcal{T}}$



Martin's proof implies that if G is a real parameter used to define a cofinal Borel set \mathcal{B} , then the B for that set belongs to the smallest countable model of a sufficiently large subset of ZFC, the axioms of set theory, to which G belongs.

Fix *n* and let $L_{\lambda(n)}$ be the smallest countable model satisfying ZFC^- , set theory without the power set axiom, and the existence of *n*-iterates of the power set applied to \mathbb{R} .

Fix *n* and let $L_{\lambda(n)}$ be the smallest countable model satisfying ZFC^- , set theory without the power set axiom, and the existence of *n*-iterates of the power set applied to \mathbb{R} .

Theorem

Suppose that $X \notin L_{\lambda(n)}$. Then there is a G such that

- L_{λ(n)}[G] is a model of ZFC[−] and the existence of n-iterates of the power set applied to ℝ.
- Every element of $2^{\omega} \cap L_{\lambda(n)}[G]$ is recursive in X + G.

Fix *n* and let $L_{\lambda(n)}$ be the smallest countable model satisfying ZFC^- , set theory without the power set axiom, and the existence of *n*-iterates of the power set applied to \mathbb{R} .

Theorem

Suppose that $X \notin L_{\lambda(n)}$. Then there is a G such that

- L_{λ(n)}[G] is a model of ZFC[−] and the existence of n-iterates of the power set applied to ℝ.
- Every element of $2^{\omega} \cap L_{\lambda(n)}[G]$ is recursive in X + G.
- Proof by Kumabe-Slaman forcing.
- ► Consequently, if $X \notin L_{\lambda(n)}$, then relative to *G*, *X* is in the cone of relatively random reals.

Theorem

For any X which is not in $L_{\lambda(n)}$, there is a continuous measure μ such that X is n-random relative to μ .

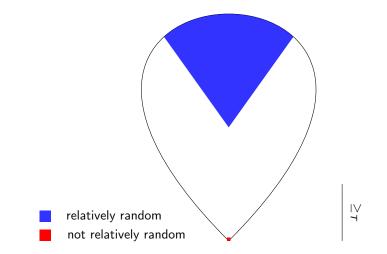
Theorem

For any X which is not in $L_{\lambda(n)}$, there is a continuous measure μ such that X is n-random relative to μ .

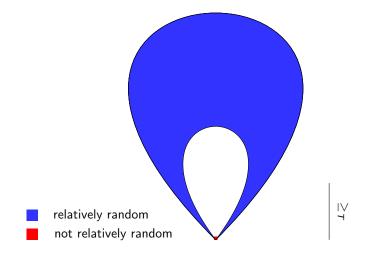
Theorem (Co-countability)

For all n, for all but countably many $X \in 2^{\omega}$ there is a continuous measure μ such that X is n-random relative to μ .

2^ω ordered by $\geq_{\mathcal{T}}$



2^ω ordered by $\geq_{\mathcal{T}}$



The Empty Bubble and the Necessity of Power Sets

- We will exhibit lower bounds on the scope of the empty bubble of the previous slide.
- It will follow that infinitely many iterates of the power set of ω are needed to prove the co-countability theorem above.
 - The proof sketch above invoked Turing determinacy for arithmetic subset of 2^{ω} , which is well-known by work of H. Friedman to have this property.

a little more about random sequences

Suppose that $n \ge 2$, $Y \in 2^{\omega}$, and X is *n*-random relative to μ .

a little more about random sequences

Suppose that $n \ge 2$, $Y \in 2^{\omega}$, and X is *n*-random relative to μ .

If *i* is less than *n*, *Y* is recursive in $(X + \mu)$ and recursive in $\mu^{(i)}$, then *Y* is recursive in μ .

a little more about random sequences

Suppose that $n \ge 2$, $Y \in 2^{\omega}$, and X is *n*-random relative to μ .

If *i* is less than *n*, *Y* is recursive in $(X + \mu)$ and recursive in $\mu^{(i)}$, then *Y* is recursive in μ .

In general, using arithmetic definitions with fewer than n quantifiers, n-random reals do not accelerate arithmetic definability.

a little more about random sequences

Example

For all k, $0^{(k)}$ is not 2-random relative to any μ .

a little more about random sequences

Example

For all k, $0^{(k)}$ is not 2-random relative to any μ .

Proof.

Say $0^{(k)}$ is 2-random relative to μ .

a little more about random sequences

Example

For all k, $0^{(k)}$ is not 2-random relative to any μ .

Proof.

Say $0^{(k)}$ is 2-random relative to μ .

 0' is recursively enumerable relative to μ and recursive in the supposedly 2-random 0^(k). Hence, 0' is recursive in μ and so 0" is recursively enumerable relative to μ.

a little more about random sequences

Example

For all k, $0^{(k)}$ is not 2-random relative to any μ .

Proof.

Say $0^{(k)}$ is 2-random relative to μ .

- 0' is recursively enumerable relative to μ and recursive in the supposedly 2-random 0^(k). Hence, 0' is recursive in μ and so 0" is recursively enumerable relative to μ.
- Use induction to conclude $0^{(k)}$ is recursive in μ , a contradiction.

a little more about random sequences

Definition

A linear order \prec on ω is well-founded iff every non-empty subset of ω has a least element.

As with arithmetic definability, for $n \ge 5$, *n*-random reals cannot accelerate the calculation of well-foundedness.

a little more about set theory

Definition

Gödel's hierarchy of constructible sets L is defined by the following recursion.

$$\blacktriangleright \ L_0 = \emptyset$$

L_{α+1} = Def(L_α), the set of subsets of L_α which are first order definable in parameters over L_α.

$$\blacktriangleright L_{\lambda} = \cup_{\alpha < \lambda} L_{\alpha}.$$

a little more about set theory

a little more about set theory

Let L_{λ} be the smallest well-founded model of ZFC⁻. (Adding finitely many iterates of the power set presents technical challenges but does not change the approach.)

For β < λ, L_β is a countable structure obtained by iterating first order definability over smaller L_α's and taking unions.

a little more about set theory

- For β < λ, L_β is a countable structure obtained by iterating first order definability over smaller L_α's and taking unions.
- ▶ Jensen's master codes are a sequence of sets $M_\beta \in 2^\omega \cap L_\lambda$, for $\beta < \lambda$, of representations of these countable structures.

a little more about set theory

- For β < λ, L_β is a countable structure obtained by iterating first order definability over smaller L_α's and taking unions.
- ▶ Jensen's master codes are a sequence of sets $M_\beta \in 2^\omega \cap L_\lambda$, for $\beta < \lambda$, of representations of these countable structures.
 - M_{β} is obtained from smaller M_{α} 's by iterating the Turing jump and taking arithmetically definable direct limits.

a little more about set theory

- For β < λ, L_β is a countable structure obtained by iterating first order definability over smaller L_α's and taking unions.
- ▶ Jensen's master codes are a sequence of sets $M_\beta \in 2^\omega \cap L_\lambda$, for $\beta < \lambda$, of representations of these countable structures.
 - M_{β} is obtained from smaller M_{α} 's by iterating the Turing jump and taking arithmetically definable direct limits.
 - Every $X \in 2^{\omega} \cap L_{\lambda}$ is recursive in some M_{β} .

Master Codes and Effective Randomness

failures of continuous randomness

Theorem

There is an n such that for all $\beta \in LOR$, if $\beta < \lambda$ then there is no continuous measure μ such that M_{β} is n-random relative to μ .

Master Codes and Effective Randomness

failures of continuous randomness

Theorem

There is an n such that for all $\beta \in LOR$, if $\beta < \lambda$ then there is no continuous measure μ such that M_{β} is n-random relative to μ .

Suppose that M_{β} were random relative to μ .

- 1. Consider the structures recursively presented relative to μ which satisfy V = L and their master codes.
- 2. Extract a maximal well-ordered set of those which appear well-founded, which will be an initial segment of the master codes below β .
- 3. Use a generalization of the jump argument for a contradiction.

Master Codes and Effective Randomness

failures of continuous randomness

Theorem

There is an n such that for all $\beta \in LOR$, if $\beta < \lambda$ then there is no continuous measure μ such that M_{β} is n-random relative to μ .

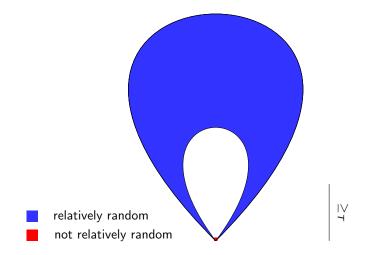
Suppose that M_{β} were random relative to μ .

- 1. Consider the structures recursively presented relative to μ which satisfy V = L and their master codes.
- 2. Extract a maximal well-ordered set of those which appear well-founded, which will be an initial segment of the master codes below β .
- 3. Use a generalization of the jump argument for a contradiction.

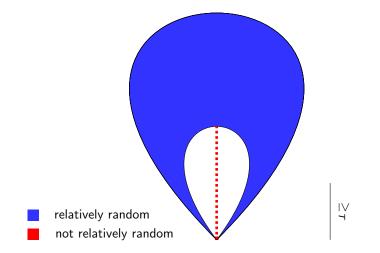
Corollary

 L_{λ} does not satisfy the Co-countability Theorem. Hence, ZFC⁻ does not prove the Co-countability Theorem.

2^ω ordered by $\geq_{\mathcal{T}}$



2^ω ordered by $\geq_{\mathcal{T}}$



A Manifesto

Structure is the antithesis of randomness.

A Manifesto

Structure is the antithesis of randomness.

- In Recursion Theory, the universal sets for the iteration of the existential number quantifier, i.e. the master codes, embody self-generating structure. By the above, they have an identifiable lack of randomness.
- ▶ Further, these same sets generate all failures of relative randomness.

 $NCR_n = \{X : \text{There is no continuous measure relative to which } X \text{ is } n \text{-random.} \}$

 $NCR_n = \{X : \text{There is no continuous measure relative to which } X \text{ is } n \text{-random.} \}$

1. Is NCR_n arithmetic or hyperarithmetic? Is it Π_1^1 -complete? Does NCR_n have a natural Π_1^1 -norm?

– It is known that $NCR_1 \cap \Delta_2^0$ is an arithmetic subset of 2^{ω} .

 $NCR_n = \{X : \text{There is no continuous measure relative to which } X \text{ is } n\text{-random.}\}$

- 1. Is NCR_n arithmetic or hyperarithmetic? Is it Π_1^1 -complete? Does NCR_n have a natural Π_1^1 -norm?
 - It is known that $NCR_1 \cap \Delta_2^0$ is an arithmetic subset of 2^{ω} .
- **2**. Is $NCR_2 \subset HYP$?
 - It is known that $NCR_1 \subset HYP$.

 $NCR_n = \{X : \text{There is no continuous measure relative to which } X \text{ is } n\text{-random.}\}$

- 1. Is NCR_n arithmetic or hyperarithmetic? Is it Π_1^1 -complete? Does NCR_n have a natural Π_1^1 -norm?
 - It is known that $NCR_1 \cap \Delta_2^0$ is an arithmetic subset of 2^{ω} .
- **2**. Is $NCR_2 \subset HYP$?
 - It is known that $NCR_1 \subset HYP$.
- Due to John Steel. For k ∈ ω, does the statement "For all n, NCR_n is countable" imply

 $ZF^- + k$ -many iterates of the power set of ω

is consistent?

 $NCR_n = \{X : \text{There is no continuous measure relative to which } X \text{ is } n \text{-random.} \}$

- 1. Is NCR_n arithmetic or hyperarithmetic? Is it Π_1^1 -complete? Does NCR_n have a natural Π_1^1 -norm?
 - It is known that $NCR_1 \cap \Delta_2^0$ is an arithmetic subset of 2^{ω} .
- **2**. Is $NCR_2 \subset HYP$?
 - It is known that $NCR_1 \subset HYP$.
- 3. Due to John Steel. For $k \in \omega$, does the statement "For all *n*, NCR_n is countable" imply

 $ZF^- + k$ -many iterates of the power set of ω

is consistent?

4. Due to Andrew Marks and Adam Day. Say that a measure is awesome if it is the push-forward of Lebesgue measure by a continuous Turing-invariant injection from 2^w to 2^w. Say that X and Y are *n*-related if they are both *n*-random relative to the same awesome measure. Let R_n be the transitive closure of this relation.
4.1 Is there an X which is R_n-equivalent to a set of Turing degree X'?
4.2 Is there an R_n equivalence class that is cofinal in the Turing degrees?