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Lebesgue Measure
formulated by measure

Definition

A real number ξ is Martin-Löf random if it does not belong to any
effectively-null Gδ set. Precisely, if (On : n ∈ N ) is a uniformly
computably enumerable sequence of open sets such that for all n, On has
measure less than 1/2n, then ξ 6∈ ∩n∈NOn.

This is not mysterious: Identify a family of sets of measure 0, and say
that ξ is random if it does not belong to any set in the family.
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Randomness
formulated by compressibility

Definition

A real number ξ is algorithmically incompressible iff there is a C such
that for all `, K (ξ � `) > `− C , where K denotes prefix-free Kolmogorov
complexity and ξ � ` denotes the first ` bits in the base 2 representation
of ξ.

This is also not mysterious: Say that ξ is incompressible when for all `, it
takes ` bits of information to describe ξ � `. One can interpret description
in a variety of ways and obtain a reasonable characteristic of ξ.
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Schnorr’s Theorem

Theorem (Schnorr 1973)

ξ is Martin-Löf random iff it is algorithmically incompressible.
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Representing Measures other than Lebesgue Measure

For the rest of this lecture, I will discuss joint work with Jan Reimann.
The collaboration excludes the inaccuracies of this presentation, all of
which I claim for myself.

Definition

A representation m of a probability measure µ on 2ω provides rational
approximations to each µ([σ]) meeting any required accuracy.

Definition

X ∈ 2ω is n-random relative to a representation m of µ if and only if it
does not belong to any m(n−1)-presented Gδ set of µ-measure 0.

We will drop the explicit reference to presentations and speak of
randomness relative to µ.
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Arbitrary Measures and 1-Randomness

Theorem

For X ∈ 2ω, the following are equivalent.

I X is not recursive.

I There is a measure µ such that µ({X}) = 0 and X is 1-random
relative to µ.

Comments on the construction of µ, given X not recursive:

I Apply the Posner-Robinson Theorem to find G such that
X + G ≡ G ′.

I Note that G ′ ≡T R, where R is 1-random relative to G .

I By compactness, convert the Turing equivalence between X and R
into a push-forward of Lebesgue measure to another measure µ so
that R’s 1-randomness transforms into X ’s 1-randomness for µ.
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Continuous Measures

Except for the first few values of n, atoms in a measure µ do not
contribute to the analysis of µ-randomness for non-atoms.

Theorem

For all n ≥ 1, for all but countably many X ∈ 2ω, there is a continuous
measure µ such that X is n-random relative to µ.

Theorem

For all k, the previous theorem cannot be proven in
ZF− + k-many iterates of the power set of ω.
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Continuous Measures
degree theoretically characterizing relative randomness

First, we translate the condition that there exist a µ for which X is
random into a condition on X ’s being relatively Turing equivalent to a
random sequence.

Definition

I For X , Y , and Z in 2ω, we write X ≡T ,Z Y to indicate that there
are Turing reductions (i.e. representations of continuous functions)
Φ and Ψ which are recursive in Z such that Φ(X ) = Y and
Ψ(Y ) = X .

I When Φ and Ψ have domain 2ω, we write X ≡tt,Z Y .

Turing reductions correspond to continuous functions defined on subsets
of 2ω. Truth-table (tt) reductions correspond to continuous functions
defined on all of 2ω.
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Continuous Measures
degree theoretically characterizing relative randomness

Proposition

For X and Z in 2ω, the following conditions are equivalent.

I There is a continuous measure µ which is recursive in Z such that X
is n-random for µ and Z .

I There is a continuous dyadic measure µ which is recursive in Z such
that X is n-random for µ and Z .

I There is an R such that R is n-random relative to Z and an order
preserving homeomorphism f : 2ω → 2ω such that f is recursive in Z
and f (R) = X .

I There is an R such that R is n-random relative to Z and X ≡tt,Z R.
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Constructing continuous measures

In order to conclude that X is n-random relative to some continuous
measure, it is sufficient to find a Z relative to which X is tt-equivalent to
some n-random sequence R.

Example

If X is recursive, then X is not 1-random relative to any continuous
measure.
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2ω ordered by ≥T

≥
T

not relatively random
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Constructing continuous measures

Theorem (Martin, Borel Determinacy)

Suppose that B is a Borel subset of 2ω and that for every A there is a Y
such that Y ≥T A and Y ∈ B. There is a B ∈ 2ω such that for every
X ≥T B there is a Y such that Y ≡T X and Y ∈ B.

Corollary

For any n ≥ 1, there is a B such that for all X ≥T B, there is a
continuous measure µ such that X is n-random relative to µ.

I If X is Turing equivalent to an (n + 1)-random relative to Z then X
is tt-equivalent to an n-random relative to Z ′.

I Consider the set B of Y ’s of the form A + R, where R is
(n + 1)-random relative to A. These are all n-random relative to
some continuous measure.
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Constructing continuous measures

Martin’s proof implies that if G is a real parameter used to define a
cofinal Borel set B, then the B for that set belongs to the smallest
countable model of a sufficiently large subset of ZFC, the axioms of set
theory, to which G belongs.
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Constructing continuous measures

Fix n and let Lλ(n) be the smallest countable model satisfying ZFC−, set
theory without the power set axiom, and the existence of n-iterates of the
power set applied to R.

Theorem

Suppose that X 6∈ Lλ(n). Then there is a G such that

I Lλ(n)[G ] is a model of ZFC− and the existence of n-iterates of the
power set applied to R.

I Every element of 2ω ∩ Lλ(n)[G ] is recursive in X + G .

I Proof by Kumabe-Slaman forcing.

I Consequently, if X 6∈ Lλ(n), then relative to G , X is in the cone of
relatively random reals.
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Constructing continuous measures

Theorem

For any X which is not in Lλ(n), there is a continuous measure µ such
that X is n-random relative to µ.

Theorem (Co-countability)

For all n, for all but countably many X ∈ 2ω there is a continuous
measure µ such that X is n-random relative to µ.
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The Empty Bubble and the Necessity of Power Sets

I We will exhibit lower bounds on the scope of the empty bubble of
the previous slide.

I It will follow that infinitely many iterates of the power set of ω are
needed to prove the co-countability theorem above.

– The proof sketch above invoked Turing determinacy for arithmetic
subset of 2ω, which is well-known by work of H. Friedman to have
this property.
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Within the Bubble
a little more about random sequences

Suppose that n ≥ 2, Y ∈ 2ω, and X is n-random relative to µ.

If i is less than n, Y is recursive in (X + µ) and recursive in µ(i), then Y
is recursive in µ.

In general, using arithmetic definitions with fewer than n quantifiers,
n-random reals do not accelerate arithmetic definability.

20/28



Within the Bubble
a little more about random sequences

Suppose that n ≥ 2, Y ∈ 2ω, and X is n-random relative to µ.

If i is less than n, Y is recursive in (X + µ) and recursive in µ(i), then Y
is recursive in µ.

In general, using arithmetic definitions with fewer than n quantifiers,
n-random reals do not accelerate arithmetic definability.

20/28



Within the Bubble
a little more about random sequences

Suppose that n ≥ 2, Y ∈ 2ω, and X is n-random relative to µ.

If i is less than n, Y is recursive in (X + µ) and recursive in µ(i), then Y
is recursive in µ.

In general, using arithmetic definitions with fewer than n quantifiers,
n-random reals do not accelerate arithmetic definability.

20/28



Within the Bubble
a little more about random sequences

Example

For all k, 0(k) is not 2-random relative to any µ.

Proof.

I Say 0(k) is 2-random relative to µ.

I 0′ is recursively enumerable relative to µ and recursive in the
supposedly 2-random 0(k). Hence, 0′ is recursive in µ and so 0′′ is
recursively enumerable relative to µ.

I Use induction to conclude 0(k) is recursive in µ, a contradiction.
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Within the Bubble
a little more about random sequences

Definition

A linear order ≺ on ω is well-founded iff every non-empty subset of ω has
a least element.

As with arithmetic definability, for n ≥ 5, n-random reals cannot
accelerate the calculation of well-foundedness.
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Within the Bubble
a little more about set theory

Definition

Gödel’s hierarchy of constructible sets L is defined by the following
recursion.

I L0 = ∅
I Lα+1 = Def (Lα), the set of subsets of Lα which are first order

definable in parameters over Lα.

I Lλ = ∪α<λLα.
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Within the Bubble
a little more about set theory

Let Lλ be the smallest well-founded model of ZFC−. (Adding finitely
many iterates of the power set presents technical challenges but does not
change the approach.)

I For β < λ, Lβ is a countable structure obtained by iterating first
order definability over smaller Lα’s and taking unions.

I Jensen’s master codes are a sequence of sets Mβ ∈ 2ω ∩ Lλ, for
β < λ, of representations of these countable structures.

– Mβ is obtained from smaller Mα’s by iterating the Turing jump and
taking arithmetically definable direct limits.

– Every X ∈ 2ω ∩ Lλ is recursive in some Mβ .
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Master Codes and Effective Randomness
failures of continuous randomness

Theorem

There is an n such that for all β ∈ LOR, if β < λ then there is no
continuous measure µ such that Mβ is n-random relative to µ.

Suppose that Mβ were random relative to µ.

1. Consider the structures recursively presented relative to µ which
satisfy V = L and their master codes.

2. Extract a maximal well-ordered set of those which appear
well-founded, which will be an initial segment of the master codes
below β.

3. Use a generalization of the jump argument for a contradiction.

Corollary

Lλ does not satisfy the Co-countability Theorem. Hence, ZFC− does not
prove the Co-countability Theorem.
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A Manifesto

Structure is the antithesis of randomness.

I In Recursion Theory, the universal sets for the iteration of the
existential number quantifier, i.e. the master codes, embody
self-generating structure. By the above, they have an identifiable
lack of randomness.

I Further, these same sets generate all failures of relative randomness.
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Questions
NCRn = {X : There is no continuous measure relative to which X is n-random.}

1. Is NCRn arithmetic or hyperarithmetic? Is it Π1
1-complete? Does

NCRn have a natural Π1
1-norm?

– It is known that NCR1 ∩ ∆0
2 is an arithmetic subset of 2ω.

2. Is NCR2 ⊂ HYP?
– It is known that NCR1 ⊂ HYP.

3. Due to John Steel. For k ∈ ω, does the statement “For all n,
NCRn is countable” imply

ZF− + k-many iterates of the power set of ω

is consistent?

4. Due to Andrew Marks and Adam Day. Say that a measure is
awesome if it is the push-forward of Lebesgue measure by a
continuous Turing-invariant injection from 2ω to 2ω. Say that X and
Y are n-related if they are both n-random relative to the same
awesome measure. Let Rn be the transitive closure of this relation.
4.1 Is there an X which is Rn-equivalent to a set of Turing degree X ′?
4.2 Is there an Rn equivalence class that is cofinal in the Turing degrees?
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– It is known that NCR1 ⊂ HYP.

3. Due to John Steel. For k ∈ ω, does the statement “For all n,
NCRn is countable” imply

ZF− + k-many iterates of the power set of ω

is consistent?

4. Due to Andrew Marks and Adam Day. Say that a measure is
awesome if it is the push-forward of Lebesgue measure by a
continuous Turing-invariant injection from 2ω to 2ω. Say that X and
Y are n-related if they are both n-random relative to the same
awesome measure. Let Rn be the transitive closure of this relation.
4.1 Is there an X which is Rn-equivalent to a set of Turing degree X ′?
4.2 Is there an Rn equivalence class that is cofinal in the Turing degrees?
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