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Classical Multi-armed Bandit Theory

The k-arm bandit problem, introduced by Robbins (1952) for
k = 2, is prototypical in the area of stochastic adaptive control that
addresses the dilemma between “exploration” and “exploitation”

» Exploration / Information: to generate information about
unknown system parameters
» Exploitation / Control: to set system inputs that attempt to
maximize expected rewards from the outputs
Lai & Robbins (1985) , Lai (1987), and Chang & Lai (1987)
introduced the regret to measure performance

Maximizing the reward is equivalent to minimizing the regret

» Asymptotic lower bound for regret

» Upper confidence bound (UCB) rule to attain asymptotic
lower bound: UCB asymptotically equivalent to Gittins index



Regret and Asymptotic Lower Bound

> Sn=y1+ ot ym yil di =~ f(50); u(0) = Egy
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where Ty (j) = 2, lt4,—jy- Hence maximizing EgSy is
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for uniformly good rules (Ry (8) = o (N?) for every 8 € ©F
and a > 0), where 0" = 0;(g), j (0) = arg max; 11 (6;) and
1(6, ) is the KL information #.



Bayesian Approach, Dynamic Programming, and Gittins Index

> Independent prior G; on 6;; infinite-horizon problem of maximizing

/"'/Ee <Z/Bi1)’i> dGy (61)---dGy (0x) = E (Z Bi1y,_> '
i=1 i=1
> Gittins (1979) and Whittle (1981) used Markovian DP to derive the
Bayes rule for this problem, which is the index rule ¢* that samples
at stage n+ 1 from the population IN;« that has the largest (Gittins)
index M (Gj«|1,(+)) over the posterior distributions Gj 7, ;).

> The Gittins index M (G) of a distribution G is the inf of solutions M
of

T—1 o >
S“%E{Zﬁffwe) e ,y,-}+MZﬂ"} —Ma
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> Although M (G) may be difficult to compute, the index rule
represents a major advance as it reduces a k-dimensional stochastic
control problem to k optimal stopping problems.



Upper Confidence Bounds as Approximations to Gittins Indices

» Chernoff & Ray (1965) considered the finite-horizon
one-armed bandit problem that chooses at each stage n(< N)
between sampling from a normal population ; with unknown
mean ¢ and known variance 1 and another population Iy with
0 reward. Assuming a normal prior on 6, the Bayes procedure
samples from My until T* ={n < N: Y yi+apn < 0}.
This is tantamount to sampling from I1; or I, according as
U, >0or <0, where U, =y, + nfla,,yN (upper confidence
bound for 6).

» Asymptotic expansion of the boundary h in a, y =~ h(n/N) as
n/N — 0 agrees with that for the Gittins index
Mc (u,v) =~ u++/ch(v/c) as B = e € — 1 and
v/c=t"1 — oo (Chang & Lai, 1987).



Asymptotically Minimal Regret of UCB Rules

» Lai (1987): Extension to exponential family
f (y;0) = %9 UCB for 6 based on n observations from
ﬂj is

Upn = inf {0 > 0.0 201 (8;.0,0) > g (n/N)} .

where g = h?, 8; , is MLE and /(0, \) is KL information #.
This suggests the UCB rule: Sample as stage n+ 1 from the
population that has the largest U; 1,(j)-

» The UCB rule attains the asymptotic lower bound for Ry (8)
for uniformly good rules, at every fixed 6, as N — oo.

» The UCB rule also attains asymptotically (as N — oo) the
Bayes regret, which is of order C (log N)?, when the prior
distribution for @ has positive continuous density over
0; € (91* —p, 07 + p) for 1 < j < k, where 67 = max;; 0;.



Multi-armed Bandits with Side (Covariate) Information

Web Source: Microsoft Research (Silicon Valley), MAB Team

Analysis & Experimentation Team (Bellevue, WA): Dong Woo Kim, Tong Xia, Alex Deng


http://research.microsoft.com/en-us/projects/bandits/

Covariate Information and Personalization

> Let p1j = 11 (6;). The classical multi-armed bandit (MAB)

problem aims at choosing ¢; sequentially so that Eg (E,’-V:l y,-)
is as close as possible to N maxy<j<y ;.

» Since the arms now also have covariate information x; and
Eo (vi) = Zjl-(:1 Eg {Ee (yi/{¢,-:j} ! Xi)} = J’le 1 (xi), where
1 (x) = e (0); x), the covariate (contextual) bandit problem
replaces Ny by >N, w1 (x;) in the classical MAB.

» The covariate information x; for the ith subject is therefore
used to “personalize” the treatment selection for the subject,
as in personalized marketing or web-based recommender
systems, or biomarker-guided therapies in personalized
medicine.



Web-based Personalization in Marketing and

Recommender Systems

> Personalized marketing (also called one-to-one marketing) uses web sites
to track a customer’s interests and purchasing records and thereby to
market products individualized for the customer, e.g., Amazon.
Recommender systems select items such as movies (e.g. Netflix) and
news (e.g. Yahoo) for users based on the users’ and the items’ features
(covariates).

» Li, Chu, Langford & Schapire (2010) model the click probability of a
news article as a function, estimated by machine learning methods, of the
user’s and article’s features. They apply a UCB-type policy targeted
towards maximizing the click probability, but no theoretical analysis or
simulation study of the performance of the policy is given.

> Tang, Rosales, Singh & Agarwal (2013) consider web-based
personalization in showing online ads for each user, with the goal of
maximizing “its effectiveness, measured in terms of click-through rate or
total revenue.” They formulate the optimization problem as a contextual
multi-armed bandit problem with the page request of each user as side
(covariate) information and layouts of ads available for the requested
page as arms.



Biomarker-guided Therapies in Personalized Medicine

> The development of imatinib (Gleevec), the first drug to target the
genetic effects of chronic myeloid leukemia (CML) while leaving
healthy cells unharmed, has revolutionized the treatment of cancer,
leading to hundreds of kinase inhibitors and other targeted drugs
that are in various stages of development in the anticancer drug
pipeline. However, most new targeted treatments have resulted in
only modest clinical benefit, with less than 50% remission rates and
less than one year of progression-free survival.

> Trastuzumab (Herceptin), which treats only patients with HER-2
positive metastatic breast cancer, has better remission rate and
longer progression-free survival because it targets the “right” patient
population.

» Genome-guided targeted therapies like Herceptin are expected to
substantially improve the effectiveness of cancer treatments, hence
recent interest in their use for drug development and for
comparative effectiveness research (CER) of approved treatments
following the health care reform legislation in 2010.



The BATTLE Trial

Biomarker-integrated Approaches of Targeted Therapy for Lung
Cancer Elimination (BATTLE)

Not randomized

n=86
Intercurrent illness — 29
Worsening overall condition — 22
Not biopsied — 17
Alternative treatment — 18

Erlotinib Vandetanib | | Erlotinib+ | | Sorafenib Erlotinib Vandetanib | |Erlotinib+ | | Sorafenib
bexarotene bexarotene
n=25 n=23 n=21 n=28 n=34 n=31 n=16 n=77
neval=25| |neval=23 | | neval=21| | neval=26 neval=33 | |neval=29 | [neval=15 | | neval=72
By marker group By marker group

EGFR: 8 16 11 10 EGFR: 9 11 9 13
KRAS/BRAF: 2 1 2 2 KRAS/BRAF: 5 2 1 12
VEGF: 10 2 3 5 VEGF: 15 14 0 34
RXR/CycD1 1 0 1 3 RXR/CycD1 0 0 0 1
None: 4 4 4 6 None 4 2 5 12

Reference: Kim et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011;1(1):44-53



An Alternative Group Sequential Design

» The BATTLE trial used (i) a hierarchical Bayesian probit
model for the response and (ii) a corresponding Bayesian
design that uses an adaptive randomization scheme to assign
treatments, with randomization probabilities proportional to
the posterior probabilities of disease control for the treatments
and biomarker classes. The final analysis reported in the 2011
paper, however, uses conventional frequentist inference and
ignores the random sample sizes due to adaptive
randomization.

» Lai, Liao & Kim (2013) proposed an alternative group
sequential design for clinical trials to develop and test
biomarker-guided strategies. It uses an adaptive randomization
method, with randomization probabilities determined at each
interim analysis, and arm elimination based on generalized
likelihood ratio statistics, with valid type | error probability to
take account of early stopping and adaptive randomization.



Multiple Objectives & Frequentist Inference in New Design

The group sequential design addresses multiple objectives

1. Treat accrued patients with the best available treatment
2. Develop a treatment strategy for future patients

3. Demonstrate that the strategy developed indeed has better
treatment effect than the Standard-Of-Care (SOC)

Lai, Liao & Kim showed that it has higher overall disease control
rates (DCR) than the design used in the BATTLE study for
patients in the trial, and maintains the prescribed type | error
probability that the strategy falsely claims better DCR than SOC,
and an overall probability guarantee that the best treatment is
included in the recommended set of treatments for future patients
in each biomarker class.



Works on Parametric Contextual Bandit Theory (k = 1)

> Woodroofe (1979) considered the one-armed covariate problem where
w2 = 0 is known and p1 (x) = 6 + x, with 6 being normally distributed.
Under some regularity conditions, he showed that the myopic policy is
asymptotically optimal for maximizing Y .-, B ' Egy:.

> Sarkar (1991) extended Woodroofe's result to y;,: ~ Fo; (- | x¢) for
Jj € {1,2}, where Fy belongs to a one-parameter exponential family.

> Clayton (1989) considered the finite-horizon case and used dynamic
programming to derive some properties of the optimal rule when y;; is
Bernoulli for j € {1,2}.

> Goldenshulger & Zeevi (2009) also considered the finite-horizon case, but
in the minimax setting of minimizing the maximum regret
Z?’Zl Ep |x: + 0 I{g0r0r) OVer 6, for Woodroofe's problem with
w1 (x) =60 + x, where ¢; =I5, 19>0} is the optimal (oracle) policy that
assumes 6 to be known. They showed that the minimax regret can be

bounded on grow to oo at various rates with N, depending on the
behavior of G ([0 — §,—60 +4]) as 6 — 0.



A Paper on Parametric Contextual Bandit Theory (k =

> Wang, Kulkarni & Poor (2005) considered a two-armed covariate bandit
problem where, for j € {1,2}, yje (%) ~ Fo; (- | x), x: € &, and 6; € ©,
with finite X and © being a subset of R.

> A parameter configuration 6 = (61, 6>) is said to be implicitly revealing if
3x*, x> € X such that arms 1 and 2 are the best arms given x; = x' and

X2, respectively.

» The paper developed an asymptotically optimal procedure in this very
restrictive case, that does not even cover simple linear regression: Finite
X, © C R univariate means that either the slope or the intercept is
known.



General Parametric Contextual Bandit Theory: Regret

> ve | {oe =4, xe} ~ F (5 0),%e); Xt i.id. G:
w(8,x) = [ yf(y:0,x)dv(y).

> Define j* (x) = arg maxi<jck 1 (6],%), 6% (x) = 0+ (), and for
B C supp (G), define Ry (0, B) by

N  k

N/BM(G* (x),%)dG(x) = > > Eo {Eo (veliy._meny | Fe-1)}

t=1 j=1

N Z/B{“(a* (x),%) — 12 (8;,%)} {Eo T (j,x)} dG (x) ,

where Ty (j, B) = Z?’:l lt4._; xceBy and Fi_1 is the o-algebra
generated by x; and (xs, ys) for s <t — 1. Note that the
measure Eg Ty (j, ) is absolutely continuous with respect to
G, and therefore we can define its Radon-Nikodym derivative
d/dG, which we denote by Eg Ty (J, X).



Asymptotic Lower Bound for Regret

Extension of classical multi-armed bandit theory involves KL
information numbers and an asymptotic lower bound that is
attainable by making use of generalized likelihood ratio (GLR)
statistics for testing a composite hypothesis. Let ¢ be uniformly
good over B C X. For 6,0 € © and x € suppG, define

/ _ f(Y;0,x) }
L (0,0 ) = inf 1O, X;x): 1(0,\;x :E{Io — T
(0:0) (A )=n(6' x) (0 25x)3 10, Xix) = B  log F(Yi\x)
(a) If j* (x) = arg maxi<j<k ft (6, %) is non-constant over B (with
leading arm transitions), then Ry (8, B) > C (8) (log N)?,
assuming £ (0,x) and /(0, \; x) to be continuously differentiable in
x belonging to neighborhoods of leading arm transitions.

(b) If j* is constant over B, then Ry (6, B)
p (0" (X) x) — 1 (0, x)
> (o) Y (o) [ MEE AN 46 .

J:P{0;=6%(X)}=0
taking >°; over the empty set as O (1).




Deferred Sampling from Inferior Arms: Adaptive

Randomization

» The UCB rule (index policy) in classical bandit theory
basically samples from an inferior arm until the sample size
satisfies the information bound (asymptotic lower bound for
Eo T (j)). For covariate bandits, an arm that is inferior at x
may be the best at another x. Therefore the uncertainty in
the sample mean at x; does not need to be immediately
reduced. A better way is to use adaptive randomization.

» Let K; denote the set of arms to be tried at time t (rationale
explained in next slide). Let
Jr = {j €K ‘U (éj,t—l,xt) — K (9?_1 (x¢) ,Xt)‘ < 5t},
where 5 denotes the MLE based on observations up to time s.
At time t, choose treatments randomly with probabilities
mjr =€ for j € Ki\Jr and 7+ = (1 — |K¢\J¢| €) / | Je] for
Jj € J.



GLR Tests and Arm Elimination

» The UCB in Lai (1987) basically inverts a one-sided likelihood
ratio test of ¢; = 0" based on observations from M;. We can
likewise consider GLR tests of the composite null hypothesis
Hj¢ :10(0j,%¢) > maxjrzj ju(0;,%¢). Rejection of the null
hypothesis suggests that [1; is significantly inferior to some

other arms for the covariate x;. The GLR statistic for testing
ILIJ' t is

Ljt—1= S lig,=jy log {f (yi; éj,tfl,xt> /f (yf; éj,tflaxt)} ;
i—1

where §j7t,1 is the constrained MLE under the constraint
1 (05, %) = maxy ; p (ijﬂt_l,xt)

» Choose N; ~ a' for some integer a > 1. For Ni_1 < t < N;,
eliminate arm j if §; ;1 < 6F_ (x;) and
Ljt—1 > g(njt—1/N;), where nj s = Ts(j). Thus K; is the set
of surviving arms at the beginning of stage t.



Asymptotic Efficiency of Covariate Bandit Policy

» The preceding bandit policy that uses adaptive randomization
(AR) and GLR-based arm elimination attains the asymptotic
lower bound for the regret of contextual bandits as N — oo.

> Iy (9,9/) in the asymptotic lower bound is related to the GLR
test statistic for the composite hypothesis H; ; that tests
non-inferiority of arm j for covariate x; based on all
observations up to time t.

» The adaptive randomization scheme that assigns most
probability to the leading arm and some probability to the
apparently inferior ones has been proposed in classical bandit
theory under the name “e-greedy algorithm”.



A Simulation Example

Three Gaussian arms whose expected reward functions are shown
on the top panel
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Nonparametric Regression and Covariate Bandits

» The functions 1 (x) = (6}, x) in the preceding parametric
theory are regression functions of y on x, one for each arm [1;.
Instead of using a parametric model that involves the
regression parameters 6;, Yang & Zhu (2002) and Rigollet &
Zeevi (2010) have used nonparametric regression to estimate
Hj-

> Yang & Zhu use an ¢;-greedy algorithm that samples from the
leading arm having the largest estimated reward [ +—1 (X¢)
with probability 1 — (k — 1) €; and all other arms with
probability ¢;. They use some nonparametric regression
method to estimate p;, which they do not specify but require
| ftj.n — 1l o, to converge to 0 a.s. for every j, as n — oo.



Nonparametric UCB Rules for Covariate Bandits

Yang & Zhu(2002) have only shown that for their allocation rule ¢,

N ;u¢t (x¢) — / x) dG (x) a.s., where p* (x) = max, 1 (x) .
but do not have any result on the regret

Ry = SN 1 E{u* (xt) — g, (xt)}. For the case k = 2, Rigollet &
Zeevi (2010) partition the covariate space, which they assume to

be [0, 1]d, into small bins. The nonparametric regression method
they use is the histogram method (also called binning or
regressogram). Basically they apply the UCB

Yjb(xe)it—1 T ((2 log t) / N} b(x,);t— 1>1/2, where b (x) denotes the bin
in which x falls. They baS|caIIy reduce a covariate bandit problem

to B classical bandit problems, where B = B,, is the total number

of bins, and thereby obtain bounds of the order n=7 for some

0 < 7 < 1 under certain regularity conditions.



A New Approach to Nonparametric Covariate Bandits

» The bias-variance tradeoff in nonparametric bandit theory is
different from that in nonparametric regression. We allow the
bin size to decrease with time t but would also combine bins
to use a linear approximation of the regression function
instead of a step function (histogram) approximation in
regions near the intersections of the mean reward functions of
different leading arms.

» We basically follow the parametric approach and modify it
with quasi-likelihood that formally assumes Gaussian noise so
that sample means are the QML estimates. Local regression
(first by binning and later by locally linear regression over
combined bins) is used to model the unknown reward
functions. Adaptive randomization is used in lieu of UCB, and
arm elimination using quasi-likelihood is also used. It can be
shown to be asymptotically efficient.



Example (k = 2 Mean Reward Functions)

Mean Reward Functions of Arms
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Estimated Mean Reward Functions at t =

Estimated Reward Function at t = 300
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Estimated Mean Reward Functions at t =

Estimated Reward Function at t = 35000
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Regret of Proposed Policy (¢p), ¢rz and ¢yz
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Conclusion

» MAB with side information (covariate/contextual bandits)
arises in many fields of application, in which the development
of personalized strategies or recommender systems requires
both exploration and exploitation

» New definitive theory of (K > 2)-armed bandits with
covariates can
» provide theoretical support for previous experimental studies in

personalized strategies and recommender systems
> be used to develop new “learn-as-we-go"” strategies

» By incorporating statistical/machine learning approaches, the
covariate bandit theory can advance “Big Data” analytics for
these applications. Implementation of the theory involves
modern developments in statistical/machine learning and in
data science.



	Overview of context-free multi-armed bandit theory
	Contextual bandits in personalized medicine and marketing
	Web-based recommender systems and marketing
	Biomarker-guided strategies

	Theory of multi-armed bandits with covariates
	Parametric contextual bandit theory
	Nonparametric theory

	Conclusion: Data science, statistical/machine learning



