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The World is Aging!
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Global Shift in Causes of Death...

Towards Chronic, Noncommunicable Diseases
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Similar Trend in Developing and Developed Countries

Source: U.S. Department of State Archive
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Personalized Medicine for Chronic Diseases

Believed by many as the future of medicine ...

Source: http://www.personalizedmedicine.com/

Often refers to tailoring by genetic profile, but it’s also common to personalize or
stratify treatments to patients based on more “macro” level characteristics, some of
which are time-varying



Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

Personalized Medicine for Chronic Diseases

Paradigm shift from “one size fits all” to individualized, patient-centric care

– Can address inherent heterogeneity across patients

– Can also address variability within patient, over time

– Can increase patient compliance or adherence, thus increasing the chance of
treatment success

– Likely to reduce the overall cost of health care

Overarching Methodological Questions:

– How to decide on the optimal treatment for an individual patient?

– How to make these treatment decisions evidence-based or data-driven?
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

Treatment Regimes or Regimens

One perspective in personalized medicine: given an individual patient’s
characteristics, can we identify a treatment, among the available options, that is
most likely to confer the most benefit?

A treatment regime is a rule (or rules) that specifies how to allocate treatment
based on an individual patient’s characteristics

If treatment is administered only once, then there is a single decision point, often
the time of diagnosis

In case of chronic diseases, treatments are typically administered at multiple
decision points
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

Dynamic Treatment Regime(n)s

A dynamic treatment regime (DTR) is a sequence of decision rules, one per
decision point (or stage), that specify how to adapt the type, dosage and timing
of treatment according to the ongoing information on an individual patient

– Each decision rule takes a patient’s treatment and covariate history as inputs, and
outputs a recommended treatment

Decision points can occur at regular intervals (e.g. yearly follow-up visits) or
clinical events (e.g. remission, relapse, complication)
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

Dynamic Treatment Regimes (DTRs)

DTRs offer a data-driven framework for operationalizing the adaptive clinical
decision-making in a time-varying setting, and thereby potentially improving it

– Clinical decision support systems for treating chronic diseases

A subject’s stage-specific treatment is not known at the start of a dynamic
regime, since treatment depends on time-varying variables
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ADHD Example: Treatment Scenarios1

ADHD: Attention Deficit Hyperactivity Disorder

1Pelham WE and Fabiano GA (2008). Evidence-based psychosocial treatment for ADHD: An update.
Journal of Clinical Child and Adolescent Psychology, 31, 184-214.



Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

ADHD Example: One Simple DTR

“Give Low-intensity BMOD initially; if the subject responds, then continue BMOD,
otherwise prescribe BMOD + MEDS”
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

ADHD Example: One Not-so-simple DTR

Stage-1 Rule: “If the baseline level of impairment is greater than a threshold
(say, ψ), prescribe MEDS; otherwise prescribe BMOD”

Stage-2 Rule: “If the subject is a responder to initial treatment, continue the
same treatment; if non-responder, prescribe BMOD + MEDS”

How to specify ψ?

14 / 88



Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

Treatment Regime vs. Realized Treatment Experience

Subjects following the same DTR can have different realized treatment
experiences:

– Subject 1 experiences “Low-intensity BMOD, followed by response, followed by
Low-intensity BMOD”

– Subject 2 experiences “Low-intensity BMOD, followed by non-response, followed
by BMOD + MEDS”
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

Notation and Data Structure

It’s a bit more than standard longitudinal data!

K stages (or decision points) on a single patient:
O1,A1, . . . ,OK ,AK ,OK+1

Oj : Observation (pre-treatment) at the j-th stage
Aj : Treatment (action) at the j-th stage, Aj ∈ Aj

Hj : History at the j-th stage,Hj = {O1,A1, . . . ,Oj−1,Aj−1,Oj}
Y : Primary Outcome (assume larger is better, without loss of generality)

A DTR is a sequence of decision rules:
d ≡ (d1, . . . , dK) with dj(hj) ∈ Aj
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

The Big Scientific Questions in DTR Research

What would be the mean outcome if the population were to follow a particular
pre-conceived DTR?

How do the mean outcomes compare among two or more DTRs?

What is the optimal DTR in terms of the mean outcome?

– What individual information (tailoring or prescriptive variables) do we use to make
these decisions?
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Chronic Diseases, Personalized Medicine and Dynamic Treatment Regimes

The Big Statistical Questions

1 What is the right kind of data for comparing two or more DTRs, or estimating
optimal DTRs? What is the appropriate study design?

– Sequential Multiple Assignment Randomized Trial (SMART)

2 How can we compare pre-conceived, embedded DTRs?
– primary analysis of SMART data

3 How can we estimate the “optimal” DTR for a given patient?

– secondary analysis of SMART data
– e.g. Q-learning, a stagewise regression-based approach, originally developed in

computer science
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SMART Design

DTR Discovery: Observational Data

People extensively use observational longitudinal data (including electronic
health records) – data collection is cheap!

Usual concerns about observational data, e.g. confounding and other hidden
biases (Rubin, 1974; Rosenbaum, 1991)

Need unverifiable assumptions to make causal inference about treatment effects

Analysis is more complex in general, and also in the DTR context (see, e.g.
Robins, 2004; Moodie, Chakraborty and Kramer, 2012)
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SMART Design

DTR Discovery: Experimental Data

As is well-known, experimental data are generally better than observational data
(of course, if you can afford it)

Standard randomized controlled trials (RCTs) assess the effectiveness of a single
dose-level of a single treatment, as compared to another

Estimating the sequence of treatments that optimizes response in a longitudinal
setting requires studying the elements in the sequence

Can this be accomplished by a series of single-stage RCTs?
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SMART Design

Example: Treating MDD

Suppose we wish to compare both front-line and second-line treatment of major
depressive disorder (MDD):

– Front-line options: citalopram (Cit) or cognitive behavioral therapy (CBT)

– Second-line options: treatment switch to Cit, CBT, or Lithium (Li)

– All responders to first-line therapy will continue with maintenance and follow-up

Remember: The goal is to find the optimal treatment sequence
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SMART Design

Example: Treating MDD

CBT

Cit

R

Maintenance dose +
telephone monitoring

R
CBT

Li

R
Cit

Li

Telephone monitoring
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SMART Design

Front-line Treatment of MDD

CBT

Cit

R

Suppose we observe 60% response with Cit, and
only 50% with CBT

Conclude: Cit is the best front-line therapy

Now run another one-stage trial amongst Cit
non-responders
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SMART Design

Second-line Treatment of MDD

Cit

Maintenance dose +
telephone monitoring

R
CBT

Li

60% respond

We now observe 40% response to CBT and 20% to Li

Conclude: CBT is the best second-line therapy

Final treatment sequence: “Cit, followed by CBT for non-responders”

– Under this regimen, we expect to see 76% of patients respond
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SMART Design

Delayed Effect

What if initial treatment with CBT increases treatment adherence⇒ subsequent
therapies more successful?

CBT

Cit

R

Maintenance dose +
telephone monitoring

R
CBT

Li

R
Cit

Li

Telephone monitoring

60% respond

50% respond

40% respond

20% respond

60% respond

30% respond

Optimal DTR: “CBT, followed by Cit for non-responders”; 80% response
expected
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SMART Design

SMART!

Two single-stage trials would not have detected the best overall strategy for
treatment

Instead, we should have used a two-stage trial

Such two-stage trials are known as SMARTs (Lavori and Dawson, 2004;
Murphy, 2005), i.e.

Sequential Multiple Assignment Randomized Trials
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SMART Design

SMART!

Susan Murphy won the MacArthur Foundation “Genius Grant” in 2013 for
inventing the SMART design:

http://www.macfound.org/fellows/898/
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SMART Design

SMARTs, in general

Multi-stage trials with a goal to inform the development of DTRs

Same subjects participate throughout (they are followed through stages of
treatment)

Each stage corresponds to a treatment decision

At each stage the patient is randomized to one of the available treatment options

Treatment options at randomization may be restricted on ethical grounds,
depending on intermediate outcome and/or treatment history
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SMART Design

SMART: The Gains

Ability to detect

– delayed therapeutic effects (treatment interactions)

– diagnostic effects

More generalizable than standard RCT?

Better recruitment and retention potential than standard RCT?
– By virtue of the option to alter a non-functioning treatment while in the trial
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SMART Design

SMART: The Costs

Unfortunately there is no free lunch!!

More expensive than a single-stage RCT

Longer follow-up

Need more participants if the trial is powered to compare whole sequences of
treatments – but there exist less expensive alternatives to power SMARTs!

More complex methods for planning and analysis: requires an experienced
statistician, or one with time to learn new methods

May require additional work to get funded: still relatively new, unfamiliar
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SMART Design

SMART vs. Crossover Trial Designs

Operationally, SMARTs look similar to crossover trials

However, conceptually they are very different

– Unlike SMART, Crossover trials aim to evaluate stand-alone treatments, not DTRs

– Unlike a crossover trial, treatment allocation in a SMART is typically adaptive to a
subject’s intermediate outcome

– Crossover trials attempt to “wash out” the “carry-over” effect while SMARTs
attempt to capture it
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SMART Design

SMART vs. Usual Adaptive Trial Designs

SMARTs are different from usual adaptive trials

– Within-subject vs. between-subject adaptation

In an (outcome-) adaptive trial, the randomization probabilities can change
during the course of the trial depending on the relative success of
already-recruited patients on each of the treatments

– Adaptive trials typically aim to reduce the number of trial participants exposed to
the inferior treatment

– Adaptive trials are most useful for examining questions where the outcome follows
fairly quickly after treatment and/or the recruitment process is (relatively) slow

– SMARTs are fixed trial designs – while randomization probabilities may depend on
covariates, those probabilities remain constant over the course of the trial
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SMART Design

Does anyone actually use SMARTs?

ADHD Trial (PI: Pelham; see Lei et al., 2012, for design details)

Primary Outcome: Teacher-rated Impairment Rating Scale (TIRS)
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SMART Design

Other Examples of SMART Studies

Schizophrenia: CATIE (Schneider et al., 2001)

Depression: STAR*D (Rush et al., 2003)

Prostate Cancer: Trials at MD Anderson Cancer Center (e.g., Thall et al., 2000)

Leukemia: CALGB Protocol 8923 (e.g., Stone et al., 1995; Wahed and Tsiatis,
2004)

Smoking Cessation: Project Quit (Strecher et al., 2008; Chakraborty et al.,
2010)

Alcohol Dependence: Oslin et al. (see, e.g., Lei et al., 2012)

Many recent examples available at the Methodology Center, PennState
University website:

http://methodology.psu.edu/ra/smart/projects
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SMART Design Principles

Primary and Secondary Hypotheses

Choose scientifically important primary hypotheses that also aid in developing
DTRs

– Power trial to address these hypotheses

Choose secondary hypotheses that further develop the DTR, and use
randomization to eliminate confounding

– Trial is not necessarily powered to address these hypotheses

– Still better than post hoc observational analyses

– Underpowered randomizations can be viewed as pilot studies for future full-blown
comparisons

From a funding perspective, it may be more feasible to design a standard
two-arm trial as primary goal, and add the secondary randomizations and DTR
estimation as a secondary goal



SMART Design Primary Analysis and Sample Size

SMART Design: Tailoring

At each stage, restrict the class of treatments only by ethical, feasibility or strong
scientific considerations

Use a low-dimension summary (e.g. responder status) instead of all intermediate
outcomes to determine randomization and restrict class of next treatments

– This will often be a key tailoring variable

– The definition must be concrete, e.g., determined using specific measure(s) at a
specific time

– Generally, this variable should be regularly available in clinical practice, so that
tailoring with this variable is feasible

– In mental illness studies, feasibility considerations may force investigators to use
preference in this low dimensional summary (e.g. STAR*D)

Collect intermediate outcomes potentially useful in further tailoring of treatment
at the analysis stage
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SMART Design Primary Analysis and Sample Size

SMART Design: Embedded DTRs

Embedded DTR-1 (d1)
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SMART Design Primary Analysis and Sample Size

SMART Design: Embedded DTRs

Embedded DTR-2 (d2)
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SMART Design Primary Analysis and Sample Size

SMART Design: Embedded DTRs

Embedded DTR-3 (d3)

40 / 88



SMART Design Primary Analysis and Sample Size

SMART Design: Embedded DTRs

Embedded DTR-4 (d4)
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SMART Design Primary Analysis and Sample Size

SMART Design: Simplified Data Structure

(O1i,A1i,O2i,A2i,Yi) for i = 1, · · · ,N, where

– O1 = ∅

– A1 ∈ {BMOD,MEDS}

– O2 = R is the response indicator, where R = 1 denotes responder and R = 0 denotes
non-responder

– A2 ∈ {BMOD,BMOD+,MEDS,MEDS+,BMOD + MEDS}

– Y is the continuous end-of-trial primary outcome

– N is the total sample size of the trial
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SMART Design Primary Analysis and Sample Size

SMART Design: Embedded DTRs (Formally)

The 4 embedded DTRs in the above SMART are:

d1 =
(

BMOD,BMODR(BMOD + MEDS)1−R
)

d2 =
(

BMOD,BMODR(BMOD+)1−R
)

d3 =
(

MEDS,MEDSR(BMOD + MEDS)1−R
)

d4 =
(

MEDS,MEDSR(MEDS+)1−R
)

Key Questions:
– How can we measure the performance of an embedded DTR?

– How can we compare two embedded DTRs in the SMART?
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Regime Mean or Value Function: The Key Estimand
What would be the mean outcome if the entire population follows a DTR d? ⇒
Call this the “Value” of d and denote by µd = Ed(Y)

Recall the general data structure, K stages (or decision points) on a single
patient: O1,A1, . . . ,OK ,AK ,OK+1

If πj(aj|hj)’s are used to allocate the treatments, then the data likelihood (or, joint
distribution) Pπ is:

f1(o1)π1(a1|o1)

K∏
j=2

fj(oj|hj−1, aj−1)πj(aj|hj)fK+1(oK+1|hK , aK)

What is the likelihood of the data under an arbitrary set of deterministic decision
rules dj(hj)’s for allocating treatments? Call it Pd:

f1(o1)I{a1 = d1(o1)}
K∏

j=2

fj(oj|hj−1, aj−1)I{aj = dj(hj)}fK+1(oK+1|hK , aK)



Regime Mean or Value Function: The Key Estimand

The notation µd = Ed(Y) actually means expectation with respect to the
distribution Pd even though the data were actually generated by Pπ

Computing Ed(Y) non-parametrically involves a change of probability measure,
under the assumption that Pd is absolutely continuous or feasible with respect to
Pπ

– Any data trajectory that can result by implementing d must also have positive
probability of occurring under the generative distribution π

Under the feasibility assumption, Ed(Y) =
∫

YdPd =
∫

Y
(

dPd
dPπ

)
dPπ where dPd

dPπ

is a version of the Radon-Nikodym derivative and is given by the ratio of the two
likelihoods:

dPd

dPπ
=

K∏
j=1

I{aj = dj(hj)}
πj(aj|hj)



Regime Mean or Value Function: The Key Estimand

Embedded regimes are, by design, feasible

For the embedded regime d1 =
(

BMOD,BMODR(BMOD + MEDS)1−R
)

, the
value function is

µd1 = Ed1(Y)

= E
[ I{A1 = BMOD,A2 = BMODR(BMOD + MEDS)1−R}

π1(A1)π2(A2|A1,R)
Y
]

= E(Wd1 Y), say

– π1 and π2 are the randomization probabilities

– Inverse probability weighting (IPW) approach

– Same underlying idea as in the classical Horvitz-Thompson estimator

Similarly, one can write expressions for other regimes d2, d3, d4



SMART Design Primary Analysis and Sample Size

Estimation of Regime Mean

The regime mean can be estimated by the IPW estimator (Robins et al., 2000):

Yd1 =

N∑
i=1

Wd1
i Yi

/ N∑
i=1

Wd1
i

Also, for large samples (Murphy, 2005):

V̂ar(Yd1) =
1

N2

N∑
i=1

(Wd1
i )2(Yi − Yd1)

2
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Primary Analysis

Depending on the research question, it could be a comparison of two or more
groups corresponding to two or more DTRs embedded in the SMART, or
components thereof

Standard methods of analysis, involving the above means and variances

Standard software like SAS PROC GENMOD can be employed2

2Nahum-Shani I, Qian M, Almiral D, Pelham W, Gnagy B, Fabiano G, et al. Experimental Design and
Primary Data Analysis Methods for Comparing Adaptive Interventions. Psychological Methods.
2012;17:457-477



SMART Design Primary Analysis and Sample Size

Primary Hypothesis and Sample Size: Scenario 1

Hypothesize that averaging over the secondary treatments, the initial treatment
BMOD is as good as the initial treatment MEDS

– Sample size formula is same as that for a two-group comparison
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SMART Design Primary Analysis and Sample Size

Primary Hypothesis and Sample Size: Scenario 2

Hypothesize that among non-responders an augmentation (BMOD+MEDS) is as
good as an intensification of treatment

– Sample size formula is same as that for a two-group comparison of
non-responders (overall sample size depends on the presumed non-response rate)
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SMART Design Primary Analysis and Sample Size

Primary Hypothesis and Sample Size: Scenario 3

Hypothesize that the “red” DTR (d2) is as good as the “green” DTR (d3)

– Sample size formula involves a two-group comparison of “weighted” means
(overall sample size depends on the presumed non-response rate)
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SMART Design Primary Analysis and Sample Size

Sample Size Requirements

Assume continuous outcome, e.g., Teacher-rated Impairment Rating Scale in case of
ADHD

Key Design Parameters:

Effect Size = ∆µ
σ (Cohen’s d)

Type I Error Rate = α = 0.05
Desired Power = 1− β = 0.8

Initial Response Rate = γ = 0.5

Trial Size:

Effect Scenario 1 Scenario 2 Scenario 3
Size
0.3 N1 = 350 N2 = N1

(1−γ) = 700 N3 = N1 × (2− γ) = 525
0.5 N1 = 128 N2 = N1

(1−γ) = 256 N3 = N1 × (2− γ) = 192
0.8 N1 = 52 N2 = N1

(1−γ) = 104 N3 = N1 × (2− γ) = 78
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SMART Design Primary Analysis and Sample Size

SMART Design: Other Comparisons

Comparing embedded DTR-1 (d1) with embedded DTR-2 (d2)

d1 and d2 share the initial treatment of BMOD

Patients who respond to BMOD are consistent with both d1 and d2, and
contribute information on the overall response to both regimens

Specialized methods are needed to account for “re-using” their information
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SMART Design Primary Analysis and Sample Size

SMART Design: Other Comparisons

Alternatively, we may wish to:
compare d1 vs. d2 vs. d3 vs. d4 to see which of the four regimes leads to the best
expected outcome

The above question requires more specialized methods to account for both
multiple comparisons as well as the re-use of data for patients who are consistent
with more than one regime
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How about Comparing DTRs with Time-to-event
Outcomes?

Same principles of inverse probability weighting apply (e.g., weighted
Kaplan-Meier estimator, weighted log-rank test, etc.)

Under the proportional hazards assumption, Li and Murphy3 provided a
conservative sample size formula using weighted log-rank test for comparing d1
and d3:

n ≤
{ 1
π1π2

+
1

(1− π1)π2

} (z1−α
2

+ z1−β)2

ξ2 · Pd1(event)

where ξ is the log hazard ratio between the times-to-event under the two DTRs,
and Pd1(event) denotes the probability of observing an event before the end of
the study among subjects following d1 (event rate)

3Li Z and Murphy SA (2011). Sample size formulae for two-stage randomized trials with survival
outcomes. Biometrika, 98(3): 503-518.



How about Comparing DTRs with Time-to-event
Outcomes?

Li and Murphy’s formula builds on sample size formula based on log rank test
for classical survival analysis4

Li and Murphy also developed an alternative formula based on weighted
Kaplan-Meier estimator, but that requires more inputs at the design stage

The log rank test based formula has been implemented in the online sample size
calculator (web app):

http://methodologymedia.psu.edu/logranktest/samplesize

4Schoenfeld DA (1981). The asymptotic properties of nonprametric tests for comparing survival
distributions. Biometrika, 68: 316-319.
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SMART in Mobile Health (mHealth)

Life is Getting Digital...
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SMART in Mobile Health (mHealth)

Mobile Phone Subscriptions, Globally
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SMART in Mobile Health (mHealth)

Countries with Shortage of Healthcare Providers

Source: Duke Global Health Institute
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SMART in Mobile Health (mHealth)

The Global Epidemic of Diabetes

Source: Duke Global Health Institute
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SMART in Mobile Health (mHealth)

mHealth Interventions for Diabetes Management

Good glycaemic control is key to managing diabetes and its many complications

Treatments for Type 2 Diabetes Mellitus (T2DM) include diet, exercise, oral
medications and insulin injections

Initiation of insulin in insulin-naive patients traditionally involves multiple visits
to a physician to adjust insulin dose which can be costly and time-consuming

– Delay in scheduling can result delay in achieving glycaemic control

Self-titration for insulin dose calculation is also an option but many patients
hesitate and express uncertainty
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SMART in Mobile Health (mHealth)

The “Diabetes Pal” App

A smartphone app, developed in Singapore (Duke-NUS and SGH), with an
in-built algorithm to compute daily insulin dosage based on lowest of the
previous 3 fasting blood glucose (FBG) readings (patients are required to
measure their FBG daily and input into the app)
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SMART in Mobile Health (mHealth)

The “Diabetes Pal” App

The feasibility of the app to deliver the insulin titration algorithm in insulin-naive
patients has been validated in a pilot RCT (n = 66):

Bee YM, et al. (2016). A smartphone application to deliver a treat-to-target insulin
titration algorithm in insulin-naive patients with type 2 diabetes: A pilot randomized
controlled trial. Diabetes Care, 39(10): e174-e176.
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SMART in Mobile Health (mHealth)

The “Diabetes Pal” App: What’s Next?

Not everyone in the population is good with technology (e.g., app); some may
need human intervention (e.g., nurse)

– But human intervention adds more cost to the healthcare system

Perhaps a stepped-care approach involving the app may be cost-effective

– Start with a low-cost, low-intensity intervention (app) first; and then step up to a
high-cost, high-intensity intervention (e.g., nurse) only for patients who show early
signs of non-response to low-cost, low-intensity intervention

It would be interesting to study if a “stepped-care regime” is almost as good as
(non-inferior to) a “more aggressive or resource-intensive regime” – if yes, then
the stepped-care regime should be selected

This sort of research question can be investigated using a SMART design

65 / 88



SMART in Mobile Health (mHealth)

A SMART Design involving The Diabetes Pal App
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SMART in Mobile Health (mHealth) Non-Inferiority Testing

Non-Inferiority Testing Framework

Embedded regimes are:
d1 = (App,AppRNurse1−R), d2 = (App,AppR(App + Nurse)1−R) and
d3 = (Nurse,NurseRNurse1−R)

Here d1 and d2 are stepped-care regimes, whereas d3 is the active control regime

In non-inferiority testing5, generally the goal is to show that the efficacy of the
experimental treatment (regime), when compared to an active control treatment
(regime), is not below the pre-specified non-inferiority margin

In practice, a non-inferiority margin is the maximum clinically acceptable
difference from the active control on average that researchers agree to accept in
exchange of the secondary benefits (e.g. cost, burden, side-effects) of the new
treatment

5D’Agostino RB, Massaro JM, Sullivan LM (2003). Non-inferiority trials: design concepts and
issues-the encounters of academic consultants in statistics. Statistics in Medicine, 22(2): 169-86
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SMART in Mobile Health (mHealth) Non-Inferiority Testing

Non-Inferiority Testing in SMARTs

For two regimes d1 and d3 with corresponding regime means µd1 and µd3

respectively, the hypothesis for the non-inferiority test is

H0 : µd1 ≤ µd3 − θ vs. H1 : µd1 > µd3 − θ,

where θ is a pre-specified non-inferiority margin (θ > 0)

This hypothesis tests that the average efficacy of regime d1 is not inferior to that
of the regime d3, with the non-inferiority margin θ

The choice of θ depends on both statistical reasoning and clinical judgment

The unscaled test statistic is Ȳd1 − Ȳd3 , with mean µd1 − µd3 and variance νd1d3

(obtained from Murphy’s calculations)
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SMART in Mobile Health (mHealth) Non-Inferiority Testing

Test Statistic and Sample Size Calculation

Under H0, the large-sample distribution of the test statistic

Zd1d3 =
(Ȳd1 − Ȳd3)− (µd1 − µd3)√

var(Ȳd1 − Ȳd3)
=

Ȳd1 − Ȳd3 + θ
√
νd1d3

→ N(0, 1)

Reject H0 at level α and conclude non-inferiority if Zd1d3 > zα (one-sided)

Deriving sample size formula requires large sample approximations and some
assumptions

Given a postulated effect size δ = µd3 − µd1 , the required n depends on the
difference between θ and δ, rather than their individual values
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SMART in Mobile Health (mHealth) Non-Inferiority Testing

“Realistic” Synthetic Data Analysis

Data simulated from the pilot study sample, with Y taken as −HbA1c

Response rate to app = 51% and response rate to nurse = 69% (according to
Deloitte Global Mobile Consumer Survey UK Edition)

Ȳd3 = −8.107 with s.d. = 0.086; Ȳd1 = −8.269 with s.d. = 0.491

For θ = 0.5, test statistic = 0.6781 < zα = 1.645, so non-inferiority can’t be
concluded

For θ = 1, test statistic = 1.6811 > zα = 1.645, so non-inferiority can be
concluded

Choice of θ is tricky!
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SMART in Mobile Health (mHealth) Adaptive SMART for Mobile Health

From SMART to SMART-AR

Technologies evolve very quickly, so interventions using mobile devices must be
evaluated and disseminated very quickly; otherwise they will lose relevance

This is a very different setting from traditional RCTs (or even traditional
SMARTs)

– SMARTs can be made more useful by incorporating adaptive randomization

– In modern contexts like mHealth, SMART with Adaptive Randomization
(SMART-AR)6 has been developed

– SMART-AR is also ethically appealing even in a non-mHealth context

– In general, how best to do this is not known yet

6Cheung YK, Chakraborty B, and Davidson K (2015). Sequential multiple assignment randomized trial
(SMART) with adaptive randomization for quality improvement in depression treatment program.
Biometrics, 71(2): 450-459.
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Estimation of Optimal DTRs

Secondary Analysis of SMART Data

Goal: To find optimal treatment sequence for each individual patient by deeply
tailoring on their time-varying covariates and intermediate outcomes

– This is to develop the evidence-based decision support system for clinicians (they
can apply these regimens while treating future patients)

Methodologically challenging – custom-made analytic tools necessary

– One popular approach is Q-learning, a stage-wise regression-based method

– We developed an R package called qLearn (Xin et al., 2012) that conducts
Q-learning (Freely available at CRAN):

http://cran.r-project.org/web/packages/qLearn/
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Estimation of Optimal DTRs Q-learning

Q-learning: Introduction

Q-learning (Watkins, 1989)

– A popular method from Reinforcement (Machine) Learning

– A generalization of least squares regression to multistage decision problems
(Murphy, 2005)

– Adapted to and implemented in the DTR context with several variations (Zhao et al.,
2009; Chakraborty et al., 2010; Schulte et al., 2012; Song et al., 2014)

– Relatively easy to understand and implement, and forms a good basis for more
complex approaches

The intuition comes from dynamic programming (Bellman, 1957) in case the
multivariate distribution of the data is known

– Q-learning is an approximate dynamic programming approach
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Estimation of Optimal DTRs Q-learning

Notation and Data Structure (Recap)

K stages (or decision points) on a single patient:

O1,A1, . . . ,OK ,AK ,OK+1

Oj : Observation (pre-treatment) at the j-th stage
Aj : Treatment (action) at the j-th stage, Aj ∈ {−1, 1}
Hj : History at the j-th stage,Hj = {O1,A1, . . . ,Oj−1,Aj−1,Oj}
Y : Primary Outcome (assume larger is better, without loss of generality)

A DTR is a sequence of decision rules:

d ≡ (d1, . . . , dK) with dj(hj) ∈ Aj
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Estimation of Optimal DTRs Q-learning

Dynamic Programming (DP): The Background

Two Stages

Move backward in time to take care of the delayed effects

Define the “Quality of treatment”, Q-functions:

Q2(h2, a2) = E
[
Y
∣∣∣H2 = h2,A2 = a2

]
Q1(h1, a1) = E

[
max

a2
Q2(H2, a2)︸ ︷︷ ︸

delayed effect

∣∣∣H1 = h1,A1 = a1

]

Optimal DTR:

dj(hj) = arg max
aj

Qj(hj, aj), j = 1, 2

What if the true Q-functions are unknown?
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Estimation of Optimal DTRs Q-learning

From DP to Q-learning

DP requires modeling the joint multivariate distribution (likelihood) of
time-varying covariates and outcome

This is hard!
– The knowledge needed to model the joint distribution is often unavailable

– Model mis-specification can lead to incorrect conclusions

Turn to semi-parametric methods

In particular, Q-learning estimates the true Q-functions from data using
regression models
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Estimation of Optimal DTRs Q-learning

Q-learning: Typical Implementation (K = 2)

Linear regression models for Q-functions:

Qj(Hj,Aj;βj, ψj) = βT
j Hj + (ψT

j Hj)Aj, j = 1, 2,

At stage 2, regress Y on (H2, H2A2) to obtain (β̂2, ψ̂2)

Construct stage-1 Pseudo-outcome:

Ỹ1i = max
a2

Q2(H2i, a2; β̂2, ψ̂2), i = 1, . . . , n

At stage 1, regress Ỹ1 on (H1, H1A1) to obtain (β̂1, ψ̂1)

Estimated Optimal DTR:

d̂j(hj) = arg max
aj

Qj(hj, aj; β̂j, ψ̂j) = sign(ψ̂T
j hj)

78 / 88



Estimation of Optimal DTRs Q-learning

Q-learning: Remarks

Q-learning is appealing because it is easy to implement in standard software, and
easy to explain to clinical collaborators who are familiar with regression

The approach has several limitations, e.g.:
– Not robust to model mis-specification

– Only limited results are available for discrete outcomes

More sophisticated approaches (e.g., A-learning or outcome-weighted learning)
exist, at least for some treatment/outcome types
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Why move through stages as in Q-learning? Why not run an
“all-at-once” multivariable regression?

Berkson’s Paradox or Collider-stratification Bias: There may be non-causal association(s) even
with randomized data, leading to biased stage-1 effects (Berkson, 1946; Greenland, 2003;

Murphy, 2005)



Estimation of Optimal DTRs Analysis of Smoking Cessation Data: A Simple Case Study

Project Quit: A Smoking Cessation Trial (Simplified)

Two-stage Web-based (eHealth) Behavioral Intervention Trial for Smoking Cessation
conducted at the University of Michigan7

Stage-1 Covariate : education (≤ high school vs. > high school)
Stage-1 Intervention : tailoring of success story, low vs. high

(in addition to free nicotine patch)
Stage-2 Covariates : quit status at 6 months (1 = quit, 0 = not quit),

months non-smoking over 6 months
Stage-2 Intervention : booster prevention vs. control

Primary Outcome : months non-smoking over 12 months

Center for Health Communications Research, University of Michigan

7Strecher et al. (2008). Web-based smoking cessation components and tailoring depth: Results of a
randomized trial. American Journal of Preventive Medicine, 34(5): 373 - 381.
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Estimation of Optimal DTRs Analysis of Smoking Cessation Data: A Simple Case Study

SMART Design Schematic (Simplified)

 Message 
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with High 
Tailoring 

R 

Booster 
Prevention 

Control 

R 

R 

Booster 
Prevention 

Control 

Stage 1 Treatment Stage 2 Treatment 
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Estimation of Optimal DTRs Analysis of Smoking Cessation Data: A Simple Case Study

Secondary Research Questions

Stage-1 question: (In future) How should a web-based smoking cessation
intervention be designed so as to maximize each individual’s chance of quitting
over the two stages? Should this intervention be adapted to the smoker’s baseline
education?

Stage-2 question: Should the stage-2 intervention be adapted to either the stage-1
intervention the smoker has already received and/or the smoker’s intermediate
outcome (e.g., stage-1 quit status)?
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Estimation of Optimal DTRs Analysis of Smoking Cessation Data: A Simple Case Study

Results from Q-learning Analysis

No significant stage-2 treatment effect (n = 479)

Stage-1 Analysis Summary (n = 1848)

Variable Coefficient 95% Bootstrap CI

education 0.01 (-0.18, 0.20)
high vs. low tailoring 0.07 (-0.01, 0.11)
tailoring:education -0.11 (-0.24, -0.00)*

The “highly individually tailored” level of story appears more effective for subjects with
less education (≤ high school)

This finding is consistent with that of Strecher et al. (2008) – a logistic regression analysis
of the stage-1 quit status (binary) data
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Discussion

Take-home Messages

SMART is a cutting-edge trial design that formalizes the sequential decision
making in clinical practice

– Very relevant for chronic conditions

– Does not necessarily require a lot of sample size (depends on the primary question)

SMARTs are useful in the modern context of mHealth

Non-inferiority testing in SMART is very appealing from a cost-effectiveness
perspective

Analysis methods exist for continuous, binary and time-to-event data coming
from a SMART

Relevant softwares are also available

Lots of open problems, thus many opportunities for statisticians!
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Shameless Self-Promotion!!



Shoot your questions, comments, criticisms, request for slides to:
bibhas.chakraborty@duke-nus.edu.sg
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