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Rising of 
Personalized 

Medicine

 The "one size fits all" strategy does not work for many 

serious diseases, such as cancer and targeted therapies 

based on individual traits tend to work better, 

 It is much more difficult to find a treatment that works 

for all patients; 

 Risk factors for a disease are likely going to vary 

among different patients groups;

 Recent advances in genomics, computational biology, 

medical imagining and regenerative medicine have 

made targeted therapies more feasible.



Model-based 
Subgroups



Subgrouping 
Methods

 Tree-like partitioning algorithms: Automatic Interaction 

Detection (AID), theta automatic interaction detection 

(THAID) and the classification and regression tree 

(CART), generalized unbiased interaction detection and 

estimation (GUIDE), model-based recursive partitioning 

(MOB), interaction tree (IT), subgroup identification 

based on difference effect search (SIDES) and Virtual 

twins (VT).



Our model 
involves change 

points

 (i) one needs to decide the number of change points 

and (ii) one must estimate the change point locations 

accurately. 

 Earlier authors proposed iterative cumulative-sum 

methods which could be computationally intensive. 

 Recent authors adopted the penalization method which 

accelerates the change point detection.



Thresholding
variable

 One first decides on the choice of the thresholding

variable for which the change point is sought. 

 Typically, simple thresholding variable is used. For 

example, in econometric time series modeling, the 

thresholding variable is simply the time. 

 Existing methods usually take one of the covariates as 

the thresholding variable, which may be inadequate for 

partitioning and prediction purposes. 

 The same applies when we choose the splitting variable 

for a tree method.



True model



Previous 
theoretical 

works

 Li and Jin (2018, AOS) proposed a two-step multi-

change point detection (TSMCPD) method for the 

model and proved the theoretical properties for 

estimators.

 Estimated number of change points is strongly 

consistent to the true number.

 Estimated locations of change points are strongly 

consistent to the true locations.

 Estimators for regression parameters enjoy the oracle 

properties.

 Allow censored survival time response too.



(1) Splitting 
stage



(2) Refining 
stage



Thresholding
variable

 When the thresholding variable Z is given, we may 

apply the two stage multiple change-point detection 

(TSMCD) method in Li and Jin (2018) to find change 

points and estimate the regression parameters. 

 In practice, the choice of thresholding variable is 

crucial on the identification and interpretation of the 

subgroups. 

 We consider 4 methods to specify the thresholding

variable Z.



Method 1. 
Single covariate



Method 2. 
Weighted 

combination



Method 3. 
Factor Analysis



Method 4. 
Principal 

Component 
Analysis



Simulations



Simulations
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Simulations



Bovine Collagen 
Clinical Trial

 We apply our subgrouping methods to a NIH-sponsored 

randomized Bovine Collagen Trial for Scleroderma 

patients at 12 centers in the USA. 

 Patients with diffuse Scleroderma were enrolled in this 

multicenter phase II double-blind placebo controlled trial 

and a total of 831 observations were collected. Patients 

were randomized to receive oral native collagen at a dose 

of 500 g/day or a similar appearing placebo. 

 The Modified Rodnan Skin Score (MRSS) was the primary 

outcome variable. 

 To implement the proposed methods to predict MRSS, we 

consider 6 predictor: ‘over’ (disease progression), ‘pain’ 

(index of pain), ‘haq’ (health assessment questionnaire), 

‘pga’ (patient self assessment of disease progression), 

‘dlcop’ (lung performance measurement) and ‘age’. 

 After removing missing values, we have a sample of 295 

observations in the downstream analysis. All



Results  



Breast Cancer 
Study

 97 lymph nodenegative breast cancer patients who 

were 55 years old or younger in this study (Veer et al. 

(2002) Nature). 

 Clinical risk factors (confounders) were age, tumor size, 

histological grade, angioinvasion, lymphocytic 

infiltration, estrogen receptor (ER) and progesterone 

receptor (PR) status. 

 Expression levels for 24,481 gene probes were 

collected. After removing genes with severe 

missingness, we analyzed 24,188 genes. 



Random selection 
of 20 genes: 

bootstrap 500 
times



Use 20 genes 
screened using 
ROC analysis (Yu 

et al. 2011)



Use 4 genes 
screened using 
nonparametric 

regression (Cheng 
et al. 2016)



Future 
extensions

 Nonparametric models;

 Causal inference;

 Software development.
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