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Schedule
Time Topic

09:00 - 09:15 AM Defining a (longitudinal) causal question

09:15 - 09:30 AM Implementing the g-formula

09:30 - 10:00 AM Case Study 1 (smoking cessation)

BREAK (10:00 - 10:30 AM)

Time Topic

10:30 - 10:55 AM Case Study 2 (HIV/ART)

10:55 - 11:15 AM Case Study 3 (aspirin)

11:15 - 11:30 AM Other considerations, methods, Q&A
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Logistics
- Opportunity to follow along with R code

- Will walk through steps to access

- Presentation and code are available

- Engage and ask questions!



What's the question?



DEFINING A (LONGITUDINAL) CAUSAL
QUESTION
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What is a cause? (Review)
In counterfactual terms:

A cause produces a outcome that is different from what would have been observed in its absence

Causal effects can be defined by difference in "potential outcomes" (PO):

For X ∈ (0, 1), individual i has two POs:

Yx =1
i  or Yx = 0

i

If all POs could be observed →  causal effects (contrasts) e.g.

ACEX→ Y = E[Yx= 1] − E[Yx= 0]

Observational data can be considered incomplete subset of POs

Confounding can thus be defined in terms of bias in set of observed POs.
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Translating observed statistical parameters to causal
quantities
For confounders C, binary exposure X, continuous outcome Y:

Exchangeability:

Yx ⊥ X = x |C

Positivity:

0 < Pr(A = a |C = c) < 1

Consistency:

if X = x then Yx = Y

Causal quantity from observed quantities:

E(Y |X = x, C) = E(Yx |C)



How to translate a question to an estimable causal
constrast?



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)

Must know enough about the outcome / disease process



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)

Must know enough about the outcome / disease process

What else influences it?



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)

Must know enough about the outcome / disease process

What else influences it?

Are these influences related to exposure?



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)

Must know enough about the outcome / disease process

What else influences it?

Are these influences related to exposure?

Do we have enough observational units at each level of exposure (and covariates) to model POs? (positivity)



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)

Must know enough about the outcome / disease process

What else influences it?

Are these influences related to exposure?

Do we have enough observational units at each level of exposure (and covariates) to model POs? (positivity)

Does the effect of exposure vary based on how that level was attained? (consistency)



How to translate a question to an estimable causal
constrast?
Can you justify PO distribution is (conditionally) independent from observed exposure level? (correct model specification
and exchangeability)

Must know enough about the outcome / disease process

What else influences it?

Are these influences related to exposure?

Do we have enough observational units at each level of exposure (and covariates) to model POs? (positivity)

Does the effect of exposure vary based on how that level was attained? (consistency)

Critical, varies by target population, and often least considered aspect
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Example:

General: "What is the effect of smoking on body weight?"

Better:

"... among individuals who ever smoked vs. never?"

"... among individuals who smoked 10 vs. 11 cigarettes per day?"

"... among individuals who smoked daily for 10 years stopping smoking?"

Each question represents a different target population contrast (consistency)

Each may have different set of relevant confounders (exchangeability)

Some may not be estimable from available data (non-positivity)
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What makes the causal question longitudinal?
Longitudinal data = repeated observations over time

1. Exposure changes over time

2. Covariates change over time

3. Outcome occurs more than once

4. Any/all of the above

5. AND you believe such variations are important to your causal question!
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Longitudinal example:
"What is the effect of smoking on CVD risk, independent of its effect on body weight?"

Does "independent" mean...

Intervening to fix everyone to the same BMI?

Intervening to prevent anyone from gaining or losing weight after treatment?

In another (magical?) world where smoking does not affect BMI?

Body weight doesn't affect total smoking duration / intensity?

How these questions are answered →  target estimand AND determines whether it can be estimated with given data

Draw the DAG!
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Not complex:

Individual and joint effects can be estimated by
conventional methods.

Complex:

Exposure at t = 1 is confounded by a consequence of X0
( Z1 is a time-varying confounder; exposure-covariate
feedback).

What makes a longitudinal question complex?
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Complex longitudinal examples:

"What is the effect of taking anti-retroviral therapy (ART) on CD4
counts, taking into account the effect of changes in HIV viral load on
subsequent treatment?"

"What is the per-protocol effect in a trial of aspirin intake on
pregnancy loss, taking into account side effects, non-compliance, and
study withdrawal?"
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Estimating effects with time-varying treatment and
confounding

(Daniel, et. al. The Stata Journal 2011.)

How would you estimate the causal of effect of A0? How about A1? And overall A?
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Extension to longitudinal data
For time-varying confounders L and binary exposure A, continuous outcome Y, also consider:

¯
LT = lt. . . , l1, l0 and 

¯
AT = a t. . . , a1, a0 where 

¯
A1{1,1} = a1 = 1, a0 = 1

Sequential exchangeability:

Ya1 ⊥ A1 = a1 |L1, A0 = a0

Positivity:

0 < Pr(A1 = a1 |A0 = a0, L1 = l1) < 1

Potential quantities of interest:

E(Y |A1 = a1, A0, L1) = E(Ya1 |A0,L1)

or,

E(Y |A1 = 1,A0 = 1,
¯
L1) = E(Y

¯
a1 |

¯
L1)
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BUT!

To estimate joint effect of continous treatment 
¯
A1 = {1,1}; confounding by L1

e.g. health deteriorates; ↑  treatment; poorer observed outcomes when A1 = 1

HOWEVER, standard regression on L1 induces biasing pathway between A0 and U and eliminates part of A0 effect

"Adjusting for the future" →  biased post-treatment strata (collider stratification bias)

Solution?



IMPLEMENTING THE G-FORMULA



True causal effect of A0 and A1 = 0;
Pr(L1 |A0 = 1) = 0.5, 0.75 untreated; Pr(A1 | L1 = 1) = 0.8, 0.4 otherwise

E[Ya0 = 1] =  76(48/160) + 76(32/160) + 44(16/160) + 44 (64/160) = 60

E[Ya0 = 0] =  84(24/160) + 84(16/160) + 52(24/160) + 52 (96/160) = 60

E[Ya0 = 1] − E[Ya0 = 0] =  0

Also,

E[Ya1 = 1 |A0, L1] − E[Ya 1 = 0 |A0, L1] =  0

HOWEVER, joint effect...

 

Hernán & Robins (2019)

Effect estimation under exposure-confounder
feedback
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Effect under continuous treatment
Unadjusted (for L1):

E[Y |A0 = 1,A1 = 1] = 76(32/ 96) + 44(64/ 96) = 54.7 E[Y |A0 = 0,A1 = 0] = 84(24/ 48) + 52(24/ 48) = 68

E[Y |A0 = 1, A1 = 1] − E[Y |A0 = 0, A1 = 0] =  -13.3

Adjust for L1 by stratification:

Within L1 = 0:

E[Y |A0 = 1,A1 = 1, L1 = 0] − E[Y |A0 = 0, A1 = 0,L1 = 0] =  76 - 84 = -8
(Subjects where A0 = 0, L1 = 0 healthier than a random draw of subjects)

Within L1 = 1:

E[Y |A0 = 1,A1 = 1, L1 = 1] − E[Y |A0 = 0, A1 = 0,L1 = 1] =  44 - 52 = -8
(Subjects where A0 = 1, L1 = 1 sicker than a random draw of subjects)

Stratification is the issue!
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Standardization to estimate counterfactual means
For point exposure and time-fixed confounders:

E(Y) = ∑
A

∑
L
E(Y ∣ A, L)P(A ∣ L)P(L)

If our model is correct, and causal assumptions hold:

E[Ya] = ∑lE[Y |A = a, L = l] ∗ f(l), where f(l) = Pr(L = l)

i.e. weighted conditional mean of Y standardized to observed covariate distribution

Extention to time-varying exposures and confounders:

E[Ya0 , a1] = ∑l1
E[Y |A0 = a0, A1 = a1, L1 = l1] ∗ f(l1 |a0), where f(l1 | a0) = Pr(L1 = l |A0 = a)

i.e., weighted conditional mean of Y standardized to exposure and covariate history as they would have been observed
under sequential randomization



Applied to the example:



E[Ya0 =1 , a1 = 1] =

E[Y |A0 = 1, A1 = 1, L1 = 0] ∗ Pr[L1 = 0 |A0 = 1] +
E[Y |A0 = 1, A1 = 1, L1 = 1] ∗ Pr[L1 = 1 |A0 = 1]

= 76 (80/160) + 44 (80/160) = 60

E[Ya0 =0 , a1 = 0] =

E[Y |A0 = 0, A1 = 0, L1 = 0] ∗ Pr[L1 = 0 |A0 = 0] +
E[Y |A0 = 0, A1 = 0, L1 = 1] ∗ Pr[L1 = 1 |A0 = 0]

= 84 (40/160) + 52 (120/160) = 60

E[Ya0 =1 , a1 = 1] − E[Ya0 = 0 ,a1 = 0] = 0

Applied to the example:



Observed Data

Considered as a simulation:



Observed Data Simulated

Considered as a simulation:



Parametric g-formula

∑
l̄

E[Y | Ā = ā, L̄ = l̄] ∗

K

∏
k= 0

f(lk | āk− 1, l̄k− 1)

where, e.g. conditional means estimated by linear, and distribution of discrete covariates by logistic, regressions

"plug-in g-formula" or "parametric g-formula"

can be generalized further to densities



Estimation Steps In Practice
Draw a DAG representing causal structure

Model temporal / structural relationships (Q-model) implied by DAG

Sample baseline values simulate POs using model

Repeat setting exposures to levels reflecting desired contrast

Bootstrap to obtain SE



INTERLUDE:

RStudio Cloud Setup



1. bit.ly/CI_tutorial_cloud



1. Create Account
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2. Navigate to project



2. Navigate to project



3. Load files



Two ways to follow along:

1. Easy Way: Scroll to line 700. Click "Play" buttons.



Two ways to follow along:

2. For fast typers: Read code. Duplicate in Console.



WORKED EXAMPLES



CASE STUDY #1

Smoking cessation on weight gain (NHEFS)
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Question of interest: What is the effect of quitting smoking ( A ) in a population of adult U.S. smokers (1971-1982) on risk
of weight gain ( Y )?



Quitting smoking on body weight change (NHEFS)
Question of interest: What is the effect of quitting smoking ( A ) in a population of adult U.S. smokers (1971-1982) on risk
of weight gain ( Y )?

Simplifying assumptions:

ONLY factors confounding ( C ) the relationship (i.e. biasing distribution POs): sex, age, race, income, marital status,
schooling, physical activity, heart failure, high BP, asthma, diabetes, chronic bronchitis / emphysema

No informative missingness, and all C measured prior to A, time-invariant, and dichotomous such that causal

relationships faithfully represented by: 



IMPORT DATA
Load NHEFS Data (NHANES 1 Epidemiologic Follow-Up Study)

aa <- read_csv(paste0(here(),"/nhefs.csv"))
# original sample size
nrow(aa)

## [1] 1746

Simplify data and create a weight gain indicator delta as outcome

a <- aa %>% 
  select(seqn,qsmk,smkintensity82_71,smokeintensity,active,exercise,wt82_71,
         sbp,dbp,hbp,hf,ht,hbpmed,sex,age,hf,race,income,marital,school,
         asthma,bronch,diabetes) %>% 
  mutate(hbp_71 = hbp) %>% na.omit()

a$delta <- as.numeric(a$wt82_71>0)

a <- a %>% select(delta, qsmk, sex, age, race, income, marital, school, active, 
                  hf, hbpmed, asthma, bronch, smokeintensity, exercise, 
                  diabetes, hbp_71)

*WARNING*: Complete case not recommended in general practice



To reduce residual confounding, continuous or interval measures should not be casually dichotomized. However, we will
do so only for the purposes of this exercise:

a$smokeintensity <- as.numeric(a$smokeintensity>median(a$smokeintensity))
a$age <- as.numeric(a$age>median(a$age))
a$exercise <- as.numeric(a$exercise>0)
a$income <- as.numeric(a$income>median(a$income))
a$marital <- as.numeric(a$marital>median(a$marital))
a$school <- as.numeric(a$school>median(a$school))
a$active <- as.numeric(a$active>0)
a$hbpmed <- as.numeric(a$hbpmed>0)
a$smokeintensity <- as.numeric(a$smokeintensity>median(a$smokeintensity))
a$exercise <- as.numeric(a$exercise>0)
a$diabetes <- as.numeric(a$diabetes>0)
a$hbp_71 <- as.numeric(a$hbp_71>0)



DESCRIBE DATA
Describe population and covariates, e.g.:

aa %>% ggplot() + geom_histogram(aes(age))

Describe basic exposure-outcome relationship:

a %>% group_by(qsmk) %>% 
  summarize(gain = sum(delta), 
            no_gain = sum(!delta), 
            mu = round((gain)/(gain + no_gain), 2))

## # A tibble: 2 x 4
##    qsmk  gain no_gain    mu
##   <dbl> <dbl>   <int> <dbl>
## 1     0   724     390  0.65
## 2     1   268      94  0.74



Causal quantity of interest:

E(Ya= 1 − Ya =0)

DAG gives us:

Variable Modelled by

Y E(Y ∣ A, C) = α0 + α1A + α2C

A P(A = 1 ∣ C) = expit(β0 + β1C)

*expit(a) = 1/[1+exp(-a)]

Causal assumptions allow us to transform:

E(Y) = ∑
A

∑
C
E(Y ∣ A,C)P(A ∣ C)P(C)

into:

E(Ya) = ∑
C
E(Y ∣ A = a, C)P(C)

when assigning a value A = a .

TRANSLATE DAG TO MODELS



FIT MODELS
Fit models for A and Y conditional on covariates:

model_A <- glm(qsmk ~ sex+age+race+income+marital+school+active+hf+hbpmed+asthma+
                 bronch+smokeintensity+exercise+diabetes+hbp_71,
               data=a,family=binomial("logit"))
summary(model_A)

model_Y <- glm(delta ~ qsmk+sex+age+race+income+marital+school+active+hf+hbpmed+
                 asthma+bronch+smokeintensity+exercise+diabetes+hbp_71,
               data=a,family=binomial("logit"))
summary(model_Y)

Note: Can survey some of the estimates for face validity. But should avoid over-interpretation, due to the joint
conditioning ("Table 2 Fallacy").



RESAMPLE FOR SIMULATION / DIAGNOSTICS
Monte Carlo resampling (with replacement). Usually, N * some factor (1 - 1000).

# resample data
index <- sample(1:nrow(a),size=1e4,replace=T)
MC <- a[index,]
nrow(MC)

## [1] 10000

MC$qsmk<-NULL
# predict exposure
pA <- predict(model_A,newdata=MC,type="response")

The variable pA is the predicted exposure under model.
Predicted prevalence of exposure: 0.2452247 versus observed prevalence: 0.2452575.



SIMULATE DISCRETE EXPOSURE STATES
Transform predicted variable (0 < pA < 1) to binary exposure status (qA) by comparing to a uniform random value:

u <- runif(1e4)
qA <- as.numeric(pA>u)
head(qA)

## [1] 0 0 0 0 1 1

mean(qA)

## [1] 0.2501

mean(a$qsmk)

## [1] 0.2452575



SIMULATE OUTCOMES UNDER BASELINE
CONDITIONS
Taking new simulated exposure qA status, we simulate the outcome under observed conditions:

pY <- predict(model_Y,newdata=data.frame(MC,qsmk=qA),type="response")

mean(pY)

## [1] 0.6733915

mean(a$delta)

## [1] 0.6720867

Note: While this is neither necessary nor sufficient to demonstrate a valid model, deviations from the observed outcome
can indicate modelling or data errors.



EFFECT OF SMOKING CESSATION
We can now estimate the effect of smoking on weight gain risk by:

1. Setting qsmk = 1, predict the probability of weight gain, taking the mean
2. Repeat with qsmk set to 0
3. Taking the difference (and ratio)

pY_1 <- predict(model_Y,newdata=data.frame(MC,qsmk=1),type="response")
mY_1<-mean(pY_1)

pY_0 <- predict(model_Y,newdata=data.frame(MC,qsmk=0),type="response")
mY_0<-mean(pY_0)

(RD <- round((mY_1 - mY_0)*100,2))

## [1] 11.39

(RR <- round(mY_1 / mY_0,2))

## [1] 1.18



INTERPRETATION
Can we interpret RD = 11.39 more cases of weight gain per 100 persons (or RR = 1.18 times risk) causally?

Evaluate causal assumptions:

Consistency: Will different ways to quit smoking lead to different effects?

Correct model specification and exchangeability: Did we include all the possible confounders? Residual
confounding? Interaction?

Interference (NEW): If a given person quit smoking, will it affect the outcome of another person in the study?

Positivity: Are there are exposed and unexposed individuals in each confounder level?



prop <- model_A$fitted.values
propD <- data.frame(
  A=as.factor(a$qsmk),pA=prop)

ggplot(propD, aes(x=pA,color=A)) + 
  geom_density()

Propensity score overlap:

Because of the number of confounding variables, we
cannot use 2 × 2 tables.

Instead we can examine predicted probability of
exposure.

Reasonable overlap between the two groups and likely
no rare confounder combinations.

POSITIVITY CHECK



CI BY BOOTSTRAP
Resample (with replacement) original data re-fitting outcome model; MC to compute contrast.

Repeat x 100 saving contrasts.

res <- NULL
for(i in 1:100){
  index <- sample(1:nrow(a),nrow(a),replace=T)
  boot_dat <- a[index,]
  model_Y <- glm(delta ~ qsmk+sex+age+race+income+marital+school+active+hf+hbpmed+asthma+bronch+
                 smokeintensity+exercise+diabetes+hbp_71,data=boot_dat,family=binomial("logit"))

  index <- sample(1:nrow(a),size=1e4,replace=T)
  MC <- boot_dat[index,]
  MC$qsmk<-NULL

  mY_1 <- mean(predict(model_Y,newdata=data.frame(MC,qsmk=1),type="response"))
  mY_0 <- mean(predict(model_Y,newdata=data.frame(MC,qsmk=0),type="response"))

  RD <- (mY_1 - mY_0)*100
  logRR <- log(mY_1 / mY_0)

  res <- rbind(res,cbind(RD,logRR))
}



CI BY BOOTSTRAP
Take take SD across bootstraps as SE; calculate Wald confidence limits:

head(res)

##             RD      logRR
## [1,] 11.348235 0.16168739
## [2,]  9.082945 0.13487830
## [3,]  5.734421 0.08472272
## [4,] 12.565192 0.17826077
## [5,] 10.325501 0.14892598
## [6,] 11.409032 0.16151644

res_sd <- apply(res,2,sd)

lclRD <- RD - 1.96*res_sd[1]
uclRD <- RD + 1.96*res_sd[1]

lclRR <- exp(log(RR) - 1.96*res_sd[2])
uclRR <- exp(log(RR) + 1.96*res_sd[2])

This bootstrap estimator yields 95% CIs of [2.51, 11.37] for the risk difference, and [1.11, 1.25] for the risk ratio.



CASE STUDY 2

ART treatment on CD4 count



Working DAG

Where:

A0 = ART treatment at t = 0
Z1 = HIV viral load >200 copies/mL just before t = 1
A1 = ART treatment at t = 1

Y = CD4 count (cells / mm3 )
U = unmeasured health status

Observed data on N = 100,000 patients:

A0 Z1 A1 Y N

0 0 0 87.29 20,927

0 0 1 112.11 9,378

0 1 0 119.65 6,065

0 1 1 144.84 13,630

1 0 0 105.28 13,478

1 0 1 130.18 6,079

1 1 0 137.72 9,390

1 1 1 162.83 21,053

(Hypothetical cohort study)

ART treatment on CD4 count



Question and statistical model

What is the effect of Ā1 =  {1, 1} on CD4 count ( Y )?

Variable Model

Y E(Y ∣ A1, Z1, A0) = α0 + α1A1 + α2Z1 + α3A0

A1 P(A1 ∣ Z1) = expit(β0 + β1Z1)

Z1 P(Z1 ∣ A0) = expit(γ0 + γ1A0)

A0 P(A0) = expit(θ0)



Statstical model to g-formula

E(Y) = ∑
A1

∑
Z1

∑
A0

E(Y ∣ A1, Z1, A0)Pr(A1 ∣ Z1)P(Z1 ∣ A0)Pr(A0)

Under causal assumptions, we can:

replace all A0 and A1 with a0 and a1 (respectively),
remove models for A0 and A1 (because they are assigned),
and equate observed conditional outcome with their PO

E(Ya0 , a1) = ∑
Z1

E(Y ∣ A1 = a1, Z1, A0 = a0)Pr(Z1 ∣ A0 = a0)

Then the objective is to estimate the conditional means and probabilities.



INPUT DATA

a0<-c(0,0,0,0,1,1,1,1)
z1<-c(0,0,1,1,0,0,1,1)
a1<-c(0,1,0,1,0,1,0,1)
y<-c(87.29,112.11,119.65,144.84,105.28,130.18,137.72,162.83)
N<-c(20927,9378,6065,13630,13478,6079,9390,21053)
#N<-c(209271,93779,60654,136293,134781,60789,93903,210530)
D<-NULL
for(i in 1:8){
  d<-data.frame(cbind(rep(a0[i],N[i]),rep(z1[i],N[i]),
                      rep(a1[i],N[i]),rep(y[i],N[i])))
  D<-rbind(D,d)
}
names(D)<-c("a0","z1","a1","y")

Sample size: 100000

Initially treated: 0.5

Mean CD4 count: 125.0951071



We fit each of the statistical models implied by our DAG:

mA0<-glm(a0~1,data=D,family=binomial("logit"))
mZ1<-glm(z1~a0,data=D,family=binomial("logit"))
mA1<-glm(a1~z1,data=D,family=binomial("logit"))
mY<-glm(y~a1+z1+a0,data=D,family=gaussian("identity"))

Predict each variable in the correct order:

# A0 (50% as observed)
pA0<-predict(mA0,type="response")
# Z1 <- A0
pZ1<-predict(mZ1,newdata=data.frame(a0=pA0),type="response")
# A1 <- ZI
pA1<-predict(mA1,newdata=data.frame(z1=pZ1),type="response")
# Y <- A0, Z1, and A1
pY<-predict(mY,newdata=data.frame(a0=pA0,z1=pZ1,a1=pA1),type="response")

Predicted initially treated: 0.5

Simulate mean CD4 count under "natural course": 125.102381

Sample mean CD4 count: 125.0951071



ESTIMATE TARGET CONTRAST
Setting A{1,1}:

pZ_1<-predict(mZ1,newdata=data.frame(a0=1),type="response")
pY_1<-predict(mY,newdata=data.frame(a0=1,z1=pZ_1,a1=1),type="response")
mY_1<-mean(pY_1)

Mean CD4 count until always treat: 150.0640176

Setting A{0,0}:

pZ_0<-predict(mZ1,newdata=data.frame(a0=0),type="response")
pY_0<-predict(mY,newdata=data.frame(a0=0,z1=pZ_0,a1=0),type="response")
mY_0<-mean(pY_0)

Mean CD4 count until always treat: 100.0562062

Mean difference = 50 cells/mL (+25 cell/mL per time-point).

(Causal if assumptions hold to allow interpretation of g-formula.)



How about simple regression?
Effect of A1 |Z1 (true effect = +25 cells/ML):

round(coef(glm(y~a1+z1,data=D,family=gaussian("identity"))),1)

## (Intercept)          a1          z1 
##        94.3        25.0        36.4

Effect of A0 (true effect = +25 cells/ML):

round(coef(glm(y~a0,data=D,family=gaussian("identity"))),1)

## (Intercept)          a0 
##       111.6        27.1

Overestimates the true effect by 2.1 cells/mL, because it includes both the direct effect ( A0 → Y ) plus indirect effect ( 
A0 → A1 → Y ).

Summing to get the total effect of A{1,1} would give incorrect estimate!



CASE STUDY 3

Aspirin on live birth (EAGeR Trial)



Estimating per-protocol effects
ITT estimates effect of treatment randomization:

may not be good estimate of drug efficacy with non-compliance

Standard regression approaches to per-protocol effect biased:

non-compliance caused by treatment, related to POs

stratification by compliance disrupts randomization

may be temporary non-compliance



EAGeR Study
Effect of Aspirin in Gestation and Reproduction (EAGeR)

Multicenter, block randomized, double-blind RCT

ASA versus placebo on live birth

Women (18-40 y/o) with 1-2 pregnancy loss

81 mg ASA + folic acid / day (N = 614)

folic acid only (N = 614)



Other parameters
Allowed up to 6 cycles to conceive

Treatment up to 36 weeks gestation

Baseline: age, BMI, income, race, education, marital status, employment, study site

Time-varying: compliance, vaginal bleeding, GI symptoms, TTP

Outcomes: live birth, pregnancy loss, loss-to-follow-up

Question of interest:
What is the effect of continual treatment by ASA on live birth among target population if compliance was maintained
through end of follow-up (by birth, pregnancy loss, or withdrawal)?



READ DATA AND DESCRIBE

aspirin<-read.table("aspirin2.txt",header=T,sep="\t")

aspirin %>% names()

##  [1] "id"             "study_month"    "eligibility"    "age"           
##  [5] "income"         "education"      "white"          "marital"       
##  [9] "employed"       "BMI"            "compliance"     "treatment"     
## [13] "bleeding"       "gastro"         "conceived"      "efuwp"         
## [17] "pregnancy_loss" "live_birth"     "last"           "site"

aspirin %>% filter(last == 1) %>% group_by(treatment) %>% 
  summarize(Y_Birth = mean(live_birth), D_Loss = mean(pregnancy_loss),
            S_Censor = mean(efuwp))

## # A tibble: 2 x 4
##   treatment Y_Birth D_Loss S_Censor
##       <int>   <dbl>  <dbl>    <dbl>
## 1         0   0.485  0.194    0.303
## 2         1   0.549  0.192    0.259



Compliance?

aspirin %>% mutate(tx = factor(treatment, levels = c(0,1), labels = c("Placebo", "ASA"))) %>% 
  ggplot() + geom_smooth(aes(x = study_month, y = compliance, color = tx), se = F) +
  scale_y_continuous(limits = c(0,1)) + scale_x_continuous(breaks = c(1:15)) +
  labs(y = "", x = "Months since randomization", color = "Treatment arm") + theme(legend.position = "bottom") + coord_cartesian(ylim = c(



Order Variable Description

8 Y Live birth

7 D pregnancy loss

6 S No pregnancy

5 C Withdrawal

4 Z Conception

3 X Compliance

2 N GI Symptoms

1 B Bleeding

Presumed causal ordering (at each time point):



Order Variable Description

8 Y Live birth

7 D pregnancy loss

6 S No pregnancy

5 C Withdrawal

4 Z Conception

3 X Compliance

2 N GI Symptoms

1 B Bleeding

FIT MODELS BASED ON ORDERING



Order Variable Description

8 Y Live birth

7 D pregnancy loss

6 S No pregnancy

5 C Withdrawal

4 Z Conception

3 X Compliance

2 N GI Symptoms

1 B Bleeding

e.g. Compliance X at each month k:

fitX<-glm(X~V1+V2+V3+V4+V5+V6+V7+
ns(V8,df=3)+V9+V10+V11+V12+V13+
ns(V14,df=3)+Xl+Xl1+B+Bl+Bl1+N+Nl+
Nl1+Z+Zl+Zl1+ns(jj,df=3),
family=binomial,data=boot,subset=R==k)

Modelled by natural cublic splines:
V8 = maternal age @ baseline
V14= maternal BMI @ baseline
jj = months since enrollment (mean-centered)

Lag - two previous values: Xl, Xl1, Bl, Bl1, Nl, Nl1, Zl,
Zl1

(Note: Can't be influenced by later events.)

FIT MODELS BASED ON ORDERING



Resample and iterate based on flowchart



Simulation decisions based on trial characteristics:

set live birth ( Y ) to 0 for all months < 8

set pregnancy loss ( D ) to 0 for months < 2

censor ( S ) at 6 months if no conception

follow to 15 months

Resample and iterate based on flowchart



RESULTS
MC resampled 500 ×  N (500 ×  1228 = 614,000)

Simulate "natural course": g-formula: 0.5381526 (observed: 0.517101)

mean(bn$Y,na.rm=T); mean(a2[a2$last==1,]$Y)

Per-protocol estimate, ASA: g-formula: 0.511022 (observed, ITT: 0.5488599)

mean(b1$Y,na.rm=T); mean(a2[a2$last==1&R==1,]$Y)

Per-protocol estimate, placebo: g-formula: 0.448 (observed, ITT: 0.485342)

mean(b0$Y,na.rm=T); mean(a2[a2$last==1&R==0,]$Y)

Per-protocol effect estimate: +6.3% live birth

(to run: pgf_annotated.R)



Review: Estimation Steps
Draw a DAG representing causal structure

Model temporal / structural relationships (Q-model) implied by DAG

Sample baseline values simulate POs using model

Repeat setting exposures to levels reflecting desired contrast

Bootstrap statistical model to obtain SE



Other considerations, methods, Q&A
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Other estimation considerations
1. Missing data

Single imputation within each bootstrap

2. No interference

Defining PO based on "distance" to other units

3. Test sensitivity to causal ordering

Re-estimate with different Q-models

4. Test sensitivity to simulation error

Try out larger MC samples

5. Natural course

Visualize means, medians, distributions



Inverse-Probability Weighted Marginal Structural Models

standardization by propensity score weighting

e.g. counterfactual means for a pseudo-population

(rather than standardized to observed covariate
distributions)

generate IPW for each treatment time

slightly easier to implement

Related approaches



Inverse-Probability Weighted Marginal Structural Models

standardization by propensity score weighting

e.g. counterfactual means for a pseudo-population

(rather than standardized to observed covariate
distributions)

generate IPW for each treatment time

slightly easier to implement

Targeted Maximum Likelihood-Based Estimation
(TMLE)

a g-computation approach that adds exposure
model to "target" estimate

usually implements cross-validated library of
algorithms (SuperLearner) to estimate the Q-model:

lasso, regularlized GLM,
K nearest neighbors,
support vector machine,
random forests, etc.

Related approaches



Some Helpful Resources
Daniel RM, De Stavola BL, Cousens SN. gformula: Estimating causal effects in the presence of time-varying
confounding or mediation using the g-computation formula. The Stata Journal. 2011: 11(4). 479-517.

Hernán MA, Robins JM (2019). Causal Inference. Boca Raton: Chapman & Hall/CRC, forthcoming.

Full working draft accessible at Miguel's site

Naimi AI, Cole SR, Kennedy EH. An Introduction to G Methods. Int J Epi. 2016.

Datasets & examples from Ashley Naimi's SER shortcourses.

Accessible at Ashley's github repo

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://github.com/ainaimi


Parting thoughts
Clear thinking about desire estimands are essential

Draw the DAG that best represents prior knowledge

Natural intervals may or may not be defined by data

Careful consideration of causal assumptions is critical

Dynamic treatment regimes (Friday!)

Interpret carefully!

Any questions / comments: Email me!

mailto:jonathan_huang@sics.a-star.edu.sg


Final Word



ADDITIONAL SLIDES



Hernán, Hsu, Healy (2018)
Description - Quantiative summary of features of the world

Prediction - Map input features onto output features

Causal Inference - Predict different worlds given change of certain features (counterfactual)

Data science is science's second chance to get causal inference right: A classification of data science tasks.
(arXiv:1804.10846)


