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I Hidden Markov models (HMMs) and MCMC methods for
I Latent state modeling in mHealth
I Diagnostic classification models in psychometric testing

I A new MCMC approach: MCMC with state substitutions
I Applications to psychometric diagnostic classification
I Applications to adaptive filtering and control in mHealth



Latent State Modeling in mHealth and Diagnostic
Classification

I Dempsey et al. (2017) use continuous-time HMMs to model
time-to-event outcomes (e.g., lapse to alcohol or illicit drug
use) from multimodal data (e.g., sensor streams along with
self-report), with interpretable states representing behavioral
constructs such as stress and craving, noisy measurements
relating the observations to the states, and parameters
capturing domain knowledge.

I DiBello, Henson and Stout (2015) introduce generalized
diagnostic classification models for psychometric
multiple-choice tests that replace 0/1 dichotomous scoring
(wrong/right) by polytomous scoring to classify examinee’s
response strategies into G (guess) and C (cognitive response),
including the option of incorrect/incomplete cognitive thinking
or lack of certain skills from wrong answers using C. They use a
Bayesian approach to model the latent states and parameters.



Particle Filters and Sequential Monte Carlo
I Let {Xt , t ≥ 1} be a Markov chain with latent/hidden states and let

Y1,Y2, . . . be conditionally independent given {Xt , t ≥ 1}, such that
Xt ∼ pt(·|Xt−1),Yt ∼ gt(·|Xt) in which pt and gt are density functions
with respect to measures νX and νY . Gordon, Salmond and Smith (1993)
introduced particle filters for estimating the hidden states in HMM, and
the monograph of Jun Liu (2001) provides a collection of techniques that
have been developed up to that time. Chan and Lai (2013) have
developed a comprehensive methodology to compute
E [ψ(XT )|Y1, . . . ,YT ], summarized in Algorithm 1 below.

I The density function p̃T of X1:T = (X1, . . . ,XT ) conditional on
Y1:T = (Y1, . . . ,YT ) is p̃T (x1:T |Y1:T ) ∝

∏T
t=1[pt(xt |xt−1)gt(Yt |xt)].This

conditional distribution is often difficult to sample from and the
normalizing constant is also difficult to compute for high-dimensional or
complicated state spaces, and particle filters use sequential Monte Carlo
(SMC) that involves importance sampling and resampling to circumvent
this difficulty. Let Xm

1:t−1 denote the sample path of the mth particle
(trajectory), 1 ≤ m ≤ M. The algorithm uses importance sampling from
a proposal density qt to circumvent this difficulty and updates not only
the particles Xm

1:t−1 but also the associated weights wm
t−1 and ancestor

Am
t−1 of Xm

t . It is initialized with Am
0 = m and wm

0 = 1/m.



Algorithm 1: SMC updating procedure for M particles

1. Sample (X̃m
1:t−1,A

m
t ), 1 ≤ m ≤ M, with replacement from

{(Xm
1:t−1,A

m
t−1) : 1 ≤ m ≤ M}, using probability wm

t−1/
∑M

i=1 w
i
t−1 for

(Xm
1:t−1,A

m
t−1)

2. Sample Xm
t from qt(·|X̃m

1:t−1), 1 ≤ m ≤ M

3. Update
wm

t = pt(X
m
t |X̃m

t−1)gt(Yt |Xm
t )/qt(X

m
t |X̃m

1:t−1),Xm
1:t = (Xm

1:t−1,X
m
t ),

1 ≤ m ≤ M

I Step 1 of the algorithm is often referred to as “bootstrap sampling”, while
step 2 as corresponds to importance sampling, yield the importance
weight wm

t .
I The SMC estimate of ψ = E [ψ(XT )|Y1, . . . ,YT ] is

ψ̂T = (Mw̄T )−1
M∑

m=1

wm
T ψ(Xm

T ), where w̄T = m−1
M∑

m=1

wm
T .

I By using martingale theory, Chan and Lai (2013) have also shown under
weak regularity conditions that

√
M(ψ̂T − ψ)⇒ N(0, σ2), with a

consistent estimate of σ2 that involves the ancestral origin Am
t−1.



Adaptive Particle Filters

I In practice, the HMM has unknown parameters:
Xt ∼ pt,θ(·|Xt−1), Yt ∼ gt,θ(·|Xt).

I Naive approach: Treat θ as a hidden state and proceed with
usual particle filters, with multiple θ’s generated within the
same particle filter. However, repeated resampling of the
static parameter results in a few distinct values of θ, i.e.,
degeneracy of particles.

I A standard Bayesian approach is to estimate θ by MCMC and
then apply the estimate θ̂ to the particle filter, but this is
computationally prohibitive.



Particle MCMC

The basic idea behind PMCMC (Andrieu, Doucet & Holenstein
(2010)) is to use MCMC iterations to approximate the distribution
of (θ,XT ) given YT .
At the kth iteration

I Sample θ∗ from proposal density q(θ∗|θ(k−1)).

I Use SMC involving M particles to approximate pθ∗(XT |YT )

I The approximating particle filter is used as proposal
distribution for a Metropolis-Hastings update for (θ,XT )
given YT .



General PMCMC and Convergence Theory

I Andrieu, Doucet & Holenstein also propose PMCMC to
approximate a distribution with density
π(θ,XT ) = p(θ)pθ(XT ), for which SMC is used to
approximate pθ∗(XT ) at the kth iteration. Assuming that the
Metropolis-Hastings sampler with proposal density q(θ∗|θ) is
irreducible and aperiodic and satisfies other regularity
conditions, they show that the PMCMC sampler converges to
π in total variation norm as K →∞, where K is the number
of iterations.

I Besides Metropolis-Hastings, they also consider using the
Gibbs sampler that leads to the particle Gibbs method, for
which they prove similar results.



SMC2 (Chopin, Jacob & Papaspiliopoulis, 2013)

This is a method for joint state and parametric estimation in HMM,
which is a variant of PMCMC.

I To each of N “θ-particles” attach a particle filter that
propagates Nx “X -particles”. The θ-particles are generated by
Chopin’s (2002) iterated batch importance sampling (IBIS)
algorithm, which is an SMC procedure to approximate the
posterior distribution of θ given YT , with MCMC
(Metropolis-Hastings) steps to rejuvenate the current set of
θ-particles when a degeneracy criterion is met.

I It is argued that “SMC2 may offer several advantages over
PMCMC” since it “calibrates automatically its tuning
parameters”, allowing Nx to change with θ. However, other
than a couple of examples, there is no theory nor practical
guideline on the choice of Nx .



θ∗ ∼ q(·|θ(k−1))

I X̃m
t ∼ πt,θ∗ (·|Xm

1 , . . . ,X
m
t−1),

m = 1, . . . ,M

I X̃m
t = (Xm

t−1, X̃
m
t )

I Importance weight

wm
t =

pt,θ∗ (X̃m
t |Xm

t−1)gt,θ∗ (Yt |X̃m
t )

πt,θ∗ (X̃m
t |Xm

1 ,...,X
m
t−1)

I Resample from (X̃ 1
t , . . . , X̃M

t )
with resampling weights ∝ wm

t

SMC (M particles) X 1
T , . . . ,XM

T to ap-
prox pθ∗ by p̂θ∗

Set θ(k) = θ∗ with probability
p̂θ∗ (YT )p(θ∗)

p̂
θ(k−1) (YT )p(θ(k−1))

q(θ(k−1)|θ∗)

q(θ∗|θ(k−1))
∧ 1

and set θ(k) = θ(k−1) otherwise.

Metropolis-Hastings to determine θ(k)

I Iterate till convergence in distribution, but don’t know when and don’t
have se estimate of θ(k) when termination occurs at k th iteration.

I Even when the actual value of θ is known, variance of the state estimate
is of order constant times M−1 (Chan & Lai, 2013). In ignorance of θ,
PMCMC rejects many choices of θ∗ in the MH iterations.

I Moreover, the difference between θ∗ and θ(k) introduces bias in state
estimate.

Flow Chart of PMCMC



A New MCMC Scheme

I PMCMC (or SMC2) basically uses the likelihood of the
parameter vector θ, computed by SMC, to update the
posterior. This computation is expensive and therefore
wasteful if a proposed move is not used in the MH step.

I We propose to approximate a target distribution of θ by a set
of N “representative” atoms, chosen sequentially by an
MCMC scheme so that the empirical distribution of the atoms
converges weakly to the target distribution as
K (= # of iterations)→∞.

I Sk = {θ1
k , . . . , θ

N
k } ⊂ Θ set of atoms chosen at the kth

iteration, Θ = {θ : p(θ) > 0}, p: target density.

I Each MCMC iteration “substitutes” the rejected atoms by a
new one according to an MH-type procedure.



Algorithm 2: MCMC-SS updating procedure for Θb,k from
Θb,k−1

1. Sample θ̃ from q(·|γb,k−1) as candidate atom.

2. Let θbν+1,k−1 = θ̃ and compute

λb
i,k = q(θbi,k−1|γb,k−1)/f (θbi,k−1), i = 1, . . . , ν + 1.

3. Sample J̃ from {1, . . . , ν + 1} with probability πb
i,k = λb

i,k

/(∑ν+1
j=1 λ

b
j,k

)
for i .

4. If J̃ = ν + 1, let Θb,k = Θb,k−1. Otherwise let
Θb,k = (Θb,k−1 ∪ {θ̃}) \ {θbJ̃,k−1}.

I Initialize by choosing γ0 ∈ Γo and generating νB i.i.d.
θ1
1,0, . . . , θ

ν
1,0; . . . ; θ1

B,0, . . . , θ
ν
B,0 from the proposal distribution q(·|γ) dm,

thereby forming the B disjoint sets Θb,0 = {θ1
b,0, . . . , θ

ν
b,0}.

I At the kth iteration (stage), use the procedure to update atom set in bth
block, b = 1, . . . ,B.



Central Limit Theorem and Consistent Estimator of σ2

Define

ψ̂b,k =
1
ν

∑
θ∈Θb,k

ψ(θ), ψ̂ =
1

B(K − κ)

B∑
b=1

K∑
k=κ+1

ψ̂b,k ,

σ̂2 =
1

B(K − κ)

B∑
b=1

K∑
k=κ+1

1
ν − 1

∑
θ∈Θb,k

(ψ(θ)− ψ̂b,k)2,

where κ represents an initial burn-in period that is asymptotically negligible as
κ = o(K).

Main Theorem: Let N = B(K − κ). Letting λ(θ|γ) = q(θ|γ)/p(θ), assume

(C) α ≤ λ(θ|γ) ≤ β for all θ ∈ Θ, γ ∈ Γ, and some β > α > 0.

Then as K →∞ and B →∞ such that B = O(K),
√
N(ψ̂ − µ)⇒ N(0, σ2),

where σ2 = ν−1Varp(ψ(θ)), in which Varp denotes the variance when θ has
density function p with respect to m. Moreover, σ2 can be consistently
estimated by σ̂2.



Choice of q(·|γ) to satisfy (C) and γb,k−1

I Suppose the target density is a member of a parametric family
q(·|γ) with p(·) = q(·|γ(p)), where γ : P → Γ, P is the space
of probability measures on Θ, and Γ is a compact, convex
measurable subset of Rd , with q(·|γ) satisfying

(C1) supθ∈Θ,γ∈Γo ‖∇γq(·|γ)‖1/V (θ) <∞,
(C2) q(θ|γ + δ)− q(θ|γ)− δ>∇γq(θ|γ) = O(‖δ‖21V (θ))

uniformly over θ ∈ Θ, γ ∈ Γo and γ + δ ∈ Γ, where
‖x‖1 =

∑ |xi | denotes the `1-norm of x ∈ Rd . Then (C) is
satisfied.

I Define γb,k−1 to be the average of {γ(θ) : θ ∈ Θb,k−1} that
involves the transitions in the bth block up to stage k − 1, for
k ≤ κ (before burn-in period). On the other hand, for k > κ,
pool across blocks to estimate γ(p) consistently, i.e., let
γ̃k−1 = B−1∑B

b=1 γb,k−1 and use it as the modified γb,k−1 for
all blocks.



Oracle Property of MCMC-SS

I Since γ̃k−1 = γ(p) + op(1), with probability approaching 1 for
large k , the candidate atom θ̃ substitutes some existing atom
in Θb,k−1.

I For large k , the conditional density function of Θb,k given
Θb,k−1 behaves like the ν-fold product density of p on Θν ,
suggesting the asymptotic optimality of ψ̂.

I The limiting variance σ2 has the weight 1/ν for the
contribution of each chosen atom for a block, hence each
random variable generated in the MCMC-SS scheme
asymptotically contributes weight (Nν)−1 to (a) the estimate
ψ̂ of µ and (b) the asymptotic variance of ψ̂.

I There is considerable flexibility in the choice of K and B in
N = B(K − κ) that determines the scaling factor in the CLT.
The theorem highlights the case B = O(K ) just to emphasize
that K should not be chosen too small relative to B .



Case p /∈ {q(·|γ) : γ ∈ Γ}
I Let I (q‖p) = Ep {log (q(θ)/p(θ))} be the Kullback-Leibler

divergence and let qγ = q(·|γ), γ̃(p) = argminγ∈ΓI (qγ‖p). Let
L(θ) = qγ̃(p)(θ)/p(θ). Let wb,k(θ) = 1/πbi ,k (defined in Step 3
of Updating Table) with θ = θbi ,k . Let

ψ̃b,k =
1
ν

( ∑
θ∈Θb,k

wb,k(θ)ψ(θ)

)/( ∑
θ∈Θb,k

wb,k(θ)

)
,

ψ̃ =
1
N

B∑
b=1

K∑
k=κ+1

ψ̃b,k .

I Since q(θ|γ)/p(θ) =
{
qγ(θ)/qγ̃(p)(θ)

}
L(θ), application of

main theorem shows that as K →∞ and B →∞ such that
B = O(K ),

√
N(ψ̃ − µ)⇒ N(0, σ2), where µ = Ep(ψ(θ)),

and σ2 can be consistently estimated by

σ̃2 =
1
N

B∑
b=1

K∑
k=κ+1

1
ν − 1

∑
θ∈Θb,k

(
ψ(θ)− ψ̃b,k

)2
.



Joint State and Parameter Estimation in Adaptive Particle
Filters

I Fix a block, and denote for notational simplicity Θb,k (with b fixed)
by Θk . Let θ ∈ Θk be the vector (Xk , γk) consisting of the hidden
state and sequential estimate of the parameter. MCMC-SS
represents the posterior distribution of Xk (respectively, γk) through
the empirical measure of M particles X1:k (respectively, N atoms) in
Algorithm 2. The basic idea is to first approximate the posterior
distribution of γ(p) (in the case p(·) = q(·|γ(p))) or of γ̃(p) (if
p /∈ {q(·|γ) : γ ∈ Γ}), and then use this posterior distribution to
generate the particles by an obvious modification of Algorithm 1.

I The proof of the Main Theorem on Algorithm 2 uses exponential
bounds on the total variation norm of the difference between the
empirical measure and the target measure, under condition (C). We
can relax (C) to accommodate the case where the exponential
convergence rate depends on the starting value by using a weighted
total variation norm, as in V-uniform ergodicity that generalizes
uniform ergodicity in the theory of Markov chains.



Group Sequential Parameter Updates and Oracle Property

I The parameter updates should be carried out at stages
k1 < · · · < kτ−1, with kτ = K , which is similar to group
sequential (instead of fully sequential) methods in sequential
analysis. Not only does it reduce the computation task, but it
is also much more stable prior to the burn-in period. In fact,
for particle filters in HMMs with known parameters, occasional
resampling is preferable to resampling at every stage because it
is computationally and also statistically (in the sense of
variance reduction) more efficient; see Chan and Lai (2013).

I The adaptive particle filter has the same asymptotic property
as the oracle particle filter for which the posterior distribution
of γ is known at every stage. Moreover, unlike PMCMC or
SMC2, it is recursive, which is a major advantage of Kalman
filters for linear state-space models.



Generalized Diagnostic Classification in Psychometric
Testing

I For the generalized diagnostic classification models (GDCM)
described in the third slide, there is a far-reaching
generalization/integration of item response theory and
restricted latent class analysis in psychometric testing. It
involves a “Q matrix” that has a row per item for each
response option, and uses a Bayesian approach to model the
examinee’s latent states, which it has implemented by a
Metropolis-Hastings within Gibbs (MHG) sampling algorithm.

I Due to the large computational resources needed, Nvidia has
agreed to provide UIUC’s project with GPU hardware and also
software assistance, hoping to use new computational power to
solve these problems.

I The automatic MCMC-SS procedure opens up new
possibilities to use these computational resources.



Continuous-time HMM in iSurvive

I The continuous-time HMM that Dempsey et al. (2017) use to
model the time to event (e.g., survival time) via a Cox model
with time-varying covariates Xt for the hazard function, as
mentioned in the third slide, is called “iSurvive” and consists
of:

I Latent states Xt = (X 1
t . . .X

d
t ) as the covariates

I Multimodal observation process Oj(t), 1 ≤ j ≤ J labeling the
data stream, is related to Xt via the generalized linear model
with mean E (Oj(t)) = g−1(φ0 + φT1 Xt)

I Markov jump process dynamics for Xt : X k
t assumes a finite set

(with cardinality nk) of values. Letting n = n1 . . . nd , the jump
process Xt has transition rate matrix Q = (qij) such that
qi = −qii is the rate at which the process leaves state j after
an exponentially distributed time with parameter qi , and jumps
to state j with probability qij/qi .

I The model parameters are those for the Cox model and the
generalized linear model.



Activity Recognition from Accelerometer Data

I Jiawei Bai’s talk on Tuesday has given a review of
accelerometer data and activity recognition (resting, walking,
etc.) from these data in various projects at John Hopkins in
which he is involved.

I Since the activity states are latent, HMMs have been used for
dynamic diagnostic classification with uncertainty
quantification, as an approach to activity quantification from
accelerometer data (Ganti et al., 2006; Zappi et al., 2008; Lee
and Cho, 2011).



Mobile Cloud Telemedicine

I “Mobile devices, due to their limited storage space and
computational capability, might not be able to perform tasks
which require intensive computing and extensive storage
resources. On the other hand, cloud computing, because of its
unique features like elasticity and scalability in both
computation ability and storage space, can be combined with
mobile computing to provide ubiquitous and personalized
healthcare to patients.” (Wang, Su and Jin, 2017; Wang et
al., 2013; Jin and Chen, 2015).

I Wang, Xu and Jin (2017) develop a dynamic scheduling
approach that uses HMM to optimize synergistically the
mobile–cloud–based telemedicine applications toward multiple
objectives: high accuracy, low latency, and long battery life.


