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BariFit MRT

• A micro-randomized trial (MRT) to promote weight
maintenance among people who received bariatric surgery.

• Data collected from:
• Fitbit tracker (step count)
• user self-report (weight, calories intake)

• mHealth intervention components:
• daily step goals
• actionable activity suggestions

• reminders to track food intake
• ...

• This talk: assess the effect of
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Data in an MRT

• On each individual: O1,A1,Y2, . . . ,OT ,AT ,YT+1.

• t: decision point.

• At : treatment indicator at decision point t.

• Ot : observation accrued between decision point t − 1 and
decision point t.

• History Ht = (O1,A1,Y2, . . . ,Ot): information accrued
prior to decision point t.
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Decision Points t

• Times at which a treatment might be provided

• Times that the treatment is likely to be beneficial

• BariFit: food track reminder may be sent every morning.
t = 1, 2, . . . , 112 (112 days)
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Treatment indicator At

• Whether a treatment is provided at decision point t

• (What type of treatment)

• Here we assume binary (At ∈ {0, 1})
• Randomization probability pt(Ht) := P(At = 1 | Ht)

• BariFit: whether a text message of food track reminder is
sent. pt(Ht) = 0.5.
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Proximal outcome Yt+1

• Outcome measured after decision point t (assumed to be
binary here)

• Something that the treatment is directly targeting

• BariFit: whether the individual completes food log on that
day

• Note the subscript!
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Observation Ot

• Observation accrued between decision point t − 1 and
decision point t.

• O1 includes baseline variables.

• BariFit: Fitbit tracker (step count)
user self-report (e.g., weekly weight)
baseline variables (e.g., age, gender)
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Availability It

• Treatment At can only be delivered at a decision point if
an individual is available.

• Available: It = 1; unavailable: It = 0. It ∈ Ot .

• Safety and ethical consideration: e.g., an individual is
unavailable for a physical activity suggestion message if
she is driving.

• Treatment effect is defined conditional on availability.
(later)

• BariFit: for food track reminder, individuals are always
available.

• Availability is different from adherence!
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Conceptual models

• Data: O1,A1,Y2, . . . ,OT ,AT ,YT+1

• Ht = (O1,A1,Y2, . . . ,Ot)

• Usually data analysts fit a series of models

Yt+1 ‘ ∼ ’ g(Ht)
Tα + β0At ,

Yt+1 ‘ ∼ ’ g(Ht)
Tα + β0At + β1AtSt ,

. . .

• g(Ht): summaries from Ht ; “control variables”

• St : potential moderators (e.g., day in the study)

• β0, β1: quantities of interest

• ‘ ∼ ’: e.g., logit or log for binary Y
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Goal

• Develop statistical methods to model and estimate the
treatment effect

• Be consistent with the scientific understanding of the β
coefficients

• Use control variables g(Ht) for noise reduction in a robust
way
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Potential outcomes

• To mathematize the problem, we use potential outcomes
notation (e.g., Rubin (1974))

• Define āt = (a1, . . . , at) where a1, . . . , at ∈ {0, 1}
• Ot(āt−1): Ot that would have been observed if individual

received treatment history āt−1.

• Similarly, Yt+1(āt), Ht(āt−1)
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Causal excursion effect

Yt+1(Āt−1, 1)

• Contrasting two excursions: following Āt−1, then receive
treatment (At = 1) vs. no treatment (At = 0) at time t.

• St(Āt−1) ⊂ Ht(Āt−1): a vector of summary variables
chosen from Ht(Āt−1).

• Effect is marginal over all variables in Ht(Āt−1) that are
not in St(Āt−1)

• Conditional on being available: It(Āt−1) = 1.
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Causal excursion effect

Yt+1(Āt−1, 1)

Yt+1(Āt−1, 0)

• Contrasting two excursions: following Āt−1, then receive
treatment (At = 1) vs. no treatment (At = 0) at time t.

• St(Āt−1) ⊂ Ht(Āt−1): a vector of summary variables
chosen from Ht(Āt−1).

• Effect is marginal over all variables in Ht(Āt−1) that are
not in St(Āt−1)

• Conditional on being available: It(Āt−1) = 1.
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• Effect is marginal over all variables in Ht(Āt−1) that are
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Causal excursion effect

log
E{Yt+1(Āt−1, 1) | St(Āt−1), It(Āt−1) = 1}
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Examples

• St(Āt−1) = 1: average treatment effect

log
E{Yt+1(Āt−1, 1) | It(Āt−1) = 1}
E{Yt+1(Āt−1, 0) | It(Āt−1) = 1}

• St(Āt−1) = (1, day in study)

log
E{Yt+1(Āt−1, 1) | dayt , It(Āt−1) = 1}
E{Yt+1(Āt−1, 0) | dayt , It(Āt−1) = 1}
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Identifiability assumptions

Assumption (consistency)

The observed data equals the potential outcome under
observed treatment assignment: Ot = Ot(Āt−1) for every t.

Assumption (positivity)

For every t, for every possible history Ht with It = 1,
P(At = a | Ht , It = 1) > 0 for a ∈ {0, 1}.

Assumption (sequential ignorability)

For every t, the potential outcomes {Ot+1(āt),
At+1(āt), . . . ,OT+1(āT ) : āT ∈ {0, 1}⊗T} are independent of
At conditional on Ht .
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Identifiability

Under assumptions on previous slide,

log
E{Yt+1(Āt−1, 1) | St(Āt−1), It(Āt−1) = 1}
E{Yt+1(Āt−1, 0) | St(Āt−1), It(Āt−1) = 1}

= log
E
{
E (Yt+1 | At = 1,Ht)|St , It = 1

}
E
{
E (Yt+1 | At = 0,Ht)|St , It = 1

}

= log

E

{
1(At=1)Yt+1

pt(Ht)

∣∣∣∣St , It = 1

}
E

{
1(At=0)Yt+1

1−pt(Ht)

∣∣∣∣St , It = 1

}
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Outline

1 Introduction

2 Special case: conditional on Ht

3 A simple and robust estimator

4 Simulation study

5 Analysis of BariFit

6 Extension: proximal outcome defined over a duration

7 Summary
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Special case: conditional on Ht

Suppose for all t,

log
E (Yt+1 | At = 1,Ht , It = 1)

E (Yt+1 | At = 0,Ht , It = 1)
= ST

t β

holds for some St ⊂ Ht and some parameter β.
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Special case: conditional on Ht

log
E (Yt+1 | At = 1,Ht , It = 1)

E (Yt+1 | At = 0,Ht , It = 1)
= ST

t β

• working model exp{g(Ht)
Tα}

• If working model is correct, then

E (Yt+1 | Ht , It = 1) = eg(Ht)Tα+AtST
t β, (1)

and one can use GEE to estimate α and β.

• However, (1) is required to guarantee the consistency of
GEE.
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Semiparametric model

• Assume this (parametric part)

log
E (Yt+1 | At = 1,Ht , It = 1)

E (Yt+1 | At = 0,Ht , It = 1)
= ST

t β

E (Yt+1 | At = 0,Ht , It = 1) = eg(Ht)Tα

• Don’t assume this; this becomes nonparametric

• “semi-parametric” model; Newey (1990), Tsiatis (2007)

• Robins (1994), structural nested mean model

19 / 38
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Semiparametric estimator
• The following estimator for β, derived based on Robins

(1994), is semiparametric locally efficient:

Pn

T∑
t=1

Ite
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β)Vt

[
g(Ht)

(At − pt(Ht))St

]
= 0

=⇒ (α̂, β̂)

• Robust: β̂ is consistent for β with any choice of control
variables g(Ht)

• “Locally efficient”: β̂ has the smallest asymptotic variance
(among all semiparametric regular and asymptotically

linear estimators) if eg(Ht)Tα is a correct model for
E (Yt+1 | Ht ,At = 0, It = 1).

Vt :=
eS

T
t β

eS
T
t β{1− eg(Ht)Tα}pt(Ht) + {1− eg(Ht)Tα+ST

t β}(1− pt(Ht))
.

20 / 38



Estimate
causal

excursion
effects

T.Qian

Introduction

Conditional
on Ht

Estimator

Simulation

BariFit

Extension

Summary

References

Intuition for robustness

Pn

T∑
t=1

It e
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β) Vt

[
g(Ht)

(At − pt(Ht)) St

]
= 0

• e−AtST
t βYt+1: “blipped-down” outcome

E (e−AtST
t βYt+1 | Ht ,At) = E{Yt+1(Āt−1, 0) | Ht ,At}

• eg(Ht)Tα: a function of Ht

• At − pt(Ht): centered treatment assignment

• =⇒ The blue term and the red term are orthogonal to
each other (with any g(Ht)).

• =⇒ robustness

21 / 38



Estimate
causal

excursion
effects

T.Qian

Introduction

Conditional
on Ht

Estimator

Simulation

BariFit

Extension

Summary

References

Intuition for robustness

Pn

T∑
t=1

It e
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β) Vt

[
g(Ht)

(At − pt(Ht)) St

]
= 0

• e−AtST
t βYt+1: “blipped-down” outcome

E (e−AtST
t βYt+1 | Ht ,At) = E{Yt+1(Āt−1, 0) | Ht ,At}
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Treatment effect of interest

• Special case considered so far: fully conditional on Ht

log
E (Yt+1 | At = 1,Ht , It = 1)

E (Yt+1 | At = 0,Ht , It = 1)
= ST

t β

• What makes more scientific sense:
marginal over variables in Ht but not in St

log
E
{
E (Yt+1 | At = 1,Ht)|St , It = 1

}
E
{
E (Yt+1 | At = 0,Ht)|St , It = 1

} = ST
t β
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A simple and robust estimator
for marginalized effect

• Control variables: exp{g(Ht)
Tα}

Pn

T∑
t=1

It e
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β) Vt

[
g(Ht)

(At − pt(Ht)) St

]
= 0

• Because the model assumption is now on the marginalized
treatment effect, the blue term and the red term are no
longer orthogonal.

• Choose p̃t(s) ∈ (0, 1)

• Form weights: Wt =

(
p̃t(St)

pt(Ht)

)At
(

1− p̃t(St)

1− pt(Ht)

)1−At

• Center treatment: At → (At − p̃t(St))

• Wt and p̃t(St) make the blue term and the red term
orthogonal to each other.

• Boruvka et al. (2018)
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A simple and robust estimator
for marginalized effect

• Control variables: exp{g(Ht)
Tα}
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Tα+AtS
T
t β)

[
g(Ht)

St

]
= 0

• Choose p̃t(s) ∈ (0, 1)

• Form weights: Wt =

(
p̃t(St)

pt(Ht)

)At
(

1− p̃t(St)

1− pt(Ht)

)1−At

• Center treatment: At → (At − p̃t(St))

• Wt and p̃t(St) make the blue term and the red term
orthogonal to each other.

• Boruvka et al. (2018)

24 / 38



Estimate
causal

excursion
effects

T.Qian

Introduction

Conditional
on Ht

Estimator

Simulation

BariFit

Extension

Summary

References

A simple and robust estimator
for marginalized effect

• Control variables: exp{g(Ht)
Tα}

Pn

T∑
t=1

It e
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β) Wt

[
g(Ht)

(At − p̃t(St)) St

]
= 0

• Choose p̃t(s) ∈ (0, 1)

• Form weights: Wt =

(
p̃t(St)

pt(Ht)

)At
(

1− p̃t(St)

1− pt(Ht)

)1−At

• Center treatment: At → (At − p̃t(St))

• Wt and p̃t(St) make the blue term and the red term
orthogonal to each other.

• Boruvka et al. (2018)

24 / 38



Estimate
causal

excursion
effects

T.Qian

Introduction

Conditional
on Ht

Estimator

Simulation

BariFit

Extension

Summary

References

A simple and robust estimator
for marginalized effect

• Suppose (α̂, β̂) solve the estimating equation:

Pn

T∑
t=1

Ite
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β)Wt

[
g(Ht)

(At − p̃t(St))St

]
= 0

• Under moment conditions, β̂ is consistent for β and is
asymptoticaly normal if

log
E
{
E (Yt+1 | At = 1,Ht)|St , It = 1

}
E
{
E (Yt+1 | At = 0,Ht)|St , It = 1

} = ST
t β

• Robustness: consistency of β̂ doesn’t require eg(Ht)Tα to
be a correct model for E (Yt+1 | At = 0,Ht , It = 1)
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Choice of p̃t

• Choice of p̃t(St) determines marginalization over time
under model misspecification of treatment effect.

• For example, if St = 1, p̃t(St) = p̃ for some p̃ ∈ (0, 1),
then β̂ converges to

β′ = log

∑T
t=1 E{E (Yt+1 | Ht ,At = 1) | It = 1}∑T
t=1 E{E (Yt+1 | Ht ,At = 0) | It = 1}

,
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Simulation: generative model

• E (Yt+1 | Ht ,At) = f (Zt) exp{At(0.1 + 0.3Zt)}
• Covariate Zt : takes value from 0, 1, 2 with equal

probability

• f (Zt) = 0.21(Zt = 0) + 0.51(Zt = 1) + 0.41(Zt = 2)

• P(At = 1 | Ht) = 0.2

• It = 1: always available
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True treatment effect

log
E (Yt+1 | At = 1,Ht , It = 1)

E (Yt+1 | At = 0,Ht , It = 1)
= 0.1 + 0.3Zt

log
E
{
E (Yt+1 | At = 1,Ht)|It = 1

}
E
{
E (Yt+1 | At = 0,Ht)|It = 1

} = 0.477

So if we let St = 1 in the analysis model, the semiparametric
locally efficient estimator would be inconsistent, and the robust
estimator would be consistent.
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Result

Estimator Sample size Bias SD RMSE CP

30 0.000 0.072 0.072 0.96
50 -0.001 0.058 0.058 0.94robust

100 0.002 0.041 0.041 0.94

30 0.047 0.070 0.084 0.94
50 0.047 0.057 0.073 0.89locally efficient

100 0.051 0.040 0.064 0.79

30 0.040 0.068 0.080 0.92
50 0.040 0.055 0.068 0.88GEE

100 0.043 0.039 0.058 0.78

* SD: standard deviation. RMSE: root mean squared error.
CP: 95% confidence interva coverage probability.
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BariFit food track reminder

• n = 45 participants:

• 112 days = 112 decision points

• At : food track reminder is sent as text message with
probability 0.5 every morning

• Yt+1: binary indicator of whether the individual completes
food log on that day (Yt+1 = 1 if logged calories > 0)
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Estimated effect

log E (Yt+1) ‘ ∼ ’ g(Ht)
Tα + β0At

• Control variables g(Ht): day in study, gender, food log
completion on previous day

• Estimation result for β0:

Method Estimate SE 95% CI p-value

robust 0.014 0.021 (-0.028, 0.056) 0.50
locally efficient 0.011 0.014 (-0.017, 0.039) 0.44

* SE: standard error. CI: confidence interval.
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Initial conclusion

• The data indicates that there is no detectable effect of the
food track reminder text message on the food log
completion of that day.

• For the next iteration of BariFit...
• Implement the reminder as part of a native app (instead of

text messages) — to improve effectiveness
• Or, combine it with other text messages (such as daily

step goal) that are sent to the individuals in the morning
— to reduce burden
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Proximal outcome defined over
a duration of time

• Sometimes the proximal outcome is measured over a
duration of time during which other treatments may occur.

• On each individual: O1,A1, . . . ,OT ,AT ,OT+1.

• Proximal outcome Yt+∆, is a known function of the
individual’s data within a subsequent window of length ∆;
i.e., Yt+∆ = y(Ot+1,At+1, . . . ,Ot+∆−1,At+∆−1,Ot+∆)
for some known function y(·).

• Previously, Yt+1 = y(Ot+1).
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Causal excursion effect

Let 0̄ be a vector of length ∆− 1.

log
E{Yt+∆(Āt−1, 1, 0̄) | St(Āt−1), It(Āt−1) = 1}
E{Yt+∆(Āt−1, 0, 0̄) | St(Āt−1), It(Āt−1) = 1}

= ST
t β

Estimating equation for β:

Pn

T∑
t=1

Ite
−AtS

T
t β(Yt+1 − eg(Ht)

Tα+AtS
T
t β)W̃t

[
g(Ht)

(At − p̃t(St))St

]
= 0,

where

W̃t = Wt ×
t+∆−1∏
j=t+1

1(Aj = 0)

1− pj(Hj)
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Summary

• Definition of causal excursion effect for binary outcome

• A semiparametric locally efficient estimator for the effect
conditional on history observed up to that time point, Ht

• A simple and robust estimator for the effect marginalized
over all but a small subset St of Ht

• An extension to settings where the proximal outcome is
defined over a duration of time during which other
treatments may occur

• An analysis of marginal effect of food track reminder in
BariFit MRT
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