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Stein’s Method (Gaussian Case ≈ 1970)

Three Main Steps:
Functional Characterization: depends on the limiting law
Differential/Difference/Integro-Differential Equation
Discerning: depends on the sequential structure

First Step: Let X = Z ∼ N (0, 1), then for all f ∈ F ,

E(Xf(X)) = E(f ′(X)),

CONVERSELY

If this last identity holds for all f ∈ F , then it characterizes normal laws among all
zero mean unit variance ones, i.e., X ∼ N (0, 1).

(First Step is sometimes called Stein’s Lemma: For the direct implication it is an
integration by parts

∫
xf(x)e−x2/2dx =

∫
f ′(x)e−x2/2dx; for the converse “need to

know the solution”.)
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Second Step: Given Y, if

E(Yf(Y)) ≈ E(f ′(Y)),

then Y Law
≈ Z.

Stein’s equation, for all x ∈ R and any test function h,

f ′h(x)− xfh(x) = h(x)− Eh(Z),

with ∥f(k)h ∥∞ ≤ Ck (k = 0, 1) so that

Eh(Z) ≈ Eh(Y) if E(f ′h(Y)− Yfh(Y)) ≈ 0.
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Applications

A Simple Example
Let (Xi)i≥1 be iid and such that E(X1) = 0, E(X2

1) = 1 and E(|X1|3) < +∞. For
any n ≥ 1, let Sn = 1√n

∑n
i=1 Xi. Then,

W1(Sn,Z) := sup
h∈Lip(1)

|Eh(Sn)− Eh(Z)| ≤ C E|X1|3√
n ,

for some C > 0.

dK(Sn,Z) := sup
h=1(−∞,x]

|Eh(Sn)− Eh(Z)| ≤ C E|X1|3√
n ,

for some C > 0.
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Extensions/Interactions
More complex dependency structures where characteristic functions methods
have shortcomings.
Several variation on the method: multivariate normal approximation, Poisson
approximation, Compound Poisson approximation, geometric approximation,
exponential approximation, various Stein-type identities, many ad-hoc
methods, functional characterization changes from one law to another.
Statistical Physics, Spin Glasses, Spanning Trees, Concentration Inequalities,
Random Matrices, Number Theory.
Malliavin Calculus, Functional Inequalities, Optimal Transport, Dirichlet forms
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The Poisson Case (L. Chen ≈ 1975)

Let X ∼ P(λ), then for any f on N,

EXf(X) = λEf(X + 1), i.e.,

EXf(X) = EX Ef(X) + EXE(f(X + 1)− f(X)).

Conversely, the above identity characterizes the Poisson law.
This then leads to a difference equation (to be solved) and Poisson Convergence
Theorems with rates follow.

Common Framework for Gaussian and Poisson Laws?

Infinitely divisible laws!
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Infinitely Divisible (ID) Laws on Rd

Definition
Let X ∼ µ have characteristic function φ. Then, X is infinitely divisible (ID) if, for
each n ≥ 1, there exists a characteristic function φn such that, for all ξ ∈ Rd,

φ(ξ) = (φn(ξ))
n
.

Equivalently,

X L
= X1,n + ....+ Xn,n,

where (Xi,n)1≤i≤n are iid with characteristic function φn.

Examples
Discrete Laws : Poisson, Geometric, Negative Binomial, etc.
Absolutely Continuous Laws : Gaussian, Stable, Laplace, Gamma, second
Wiener chaos, double Pareto, Gumbel, cube of normal, etc.
Laws with bounded support not ID
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Some Very Classical Results

Closure Under Weak Convergence
Let (Xn)n≥1 be a sequence of ID r.v.s converging in law to X∞. Then, X∞ is ID.

Approximation by sequence of compound Poisson laws
Let X be ID with c.f. φ. For each n ≥ 1, let Xn be a r.v. defined via the c.f. φn
given by

φn(ξ) = exp
(

n
(
φ(ξ)

1
n − 1

))
, ξ ∈ Rd.

Then, Xn
Law−→

n→+∞
X.
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A Classical Limit Theorem

Let (rn)n≥1 be a sequence of integers
rn −→

n→+∞
+∞

∀ε > 0, max1≤k≤rn P(∥Znk∥ > ε) −→
n→+∞

0

∀n ≥ 1, (Zn1,Zn2, ...,Znrn) independent

Z11 Z12 ... Z1r1
Z21 Z22 ... Z2r2
... ... ... ...
Zn1 Zn2 ... Znrn

... ... ... ...

Kolmogorov-Khintchine ∼ 1937

If there exist a sequence of vectors of Rd (cn)n≥1 and a probability measure µ such that
rn∑

k=1

Znk + cn
Law−→

n→+∞
µ

Then, µ is ID.
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Self-Decomposable Laws on Rd

Definition
A r.v. X ∼ µ with c.f. φ is self-decomposable (SD) if for any 0 < c < 1 there exists a c.f.
φc s.t.

φ(ξ) = φ(c ξ)φc(ξ), ξ ∈ Rd , i.e.,

X Law
= cX + Xc,

with Xc independent of X, i.e.,

µ = Tc(µ) ∗ µc,

where Tc(µ)(B) = µ(B/c), B Borel set of Rd.

Remarks
SD laws are ID
SD laws are absolutely continuous with respect to Lebesgue measure
Some classical examples: stable as well as gamma laws but many others!
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Another Classical Limit Theorem

(bn)n≥1 is a sequence of strictly positive reals
(Zk)k≥1 independent s.t., ∀ε > 0, max1≤k≤n P(bn∥Zk∥ > ε) −→

n→+∞
0

Khintchine-Lévy ∼ 1938

If there exist a sequence of reals (cn)n≥1 and a probability measure µ such that

Sn = bn

n∑
k=1

Zk + cn
Law−→

n→+∞
µ

then µ is self-decomposable (subclass of ID laws) (when µ is non-degenerate, then
necessarily bn+1/bn → 1 and bn →

n→+∞
0. Moreover, the converse is also true, i.e., any

self decomposable µ is the weak limit of sums as above.
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Stein’s Method For ID (SD) Laws

C. Stein, 1986
”Two other cases that seem likely to introduce interesting new features but no
insuperable difficulties are infinitely divisible laws and the multivariate normal case.”

Questions // Program

ID versions of characterizing identity?
Quantitative versions of the previous results?
Which quantities allow for a control of usual distances implying weak convergence?
Explicit rates of convergence?
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Representation
Lévy-Khintchine Representation
Let X be a r.v. with law µ and characteristic function φ. Then X is ID if and only if for
all ξ ∈ Rd

φ(ξ) = exp
(

i⟨b; ξ⟩ − 1

2
⟨ξ; Σξ⟩+

∫
Rd

(
ei⟨u;ξ⟩ − 1− i⟨u; ξ⟩1∥u∥≤1

)
ν(du)

)
,

b ∈ Rd, Σ ≥ 0, and ν is a positive Borel measure on Rd s.t.
∫
Rd(1 ∧ ∥u∥2)ν(du) < +∞

and ν({0}) = 0. X ∼ ID(b,Σ, ν).

Remark
No Gaussian component ⇐⇒ Σ = 0

For d = 1, Poisson⇐⇒ ID(λ, 0, λδ1)∫
∥u∥≥1

∥u∥ν(du) < +∞, then,
φ(ξ) = exp

(
i⟨EX; ξ⟩+

∫
Rd

(
ei⟨u;ξ⟩ − 1− i⟨u; ξ⟩

)
ν(du)

)
∫
∥u∥≤1

∥u∥ν(du) < +∞, then, φ(ξ) = exp
(

i⟨b0; ξ⟩+
∫
Rd

(
ei⟨u;ξ⟩ − 1

)
ν(du)

)
, with

b0 = b −
∫
∥u∥≤1

uν(du)
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Characterizing ID Laws With E∥X∥ < +∞

Theorem [B. A. and C.Houdré, 2017]
Let d = 1. Let X with E|X| < +∞ and ν be a Lévy measure on R such that∫
|u|≥1

|u|ν(du) < +∞. Then,

Cov(X, f(X)) = E
∫ +∞

−∞
(f(X + u)− f(X)) uν(du),

for all f, bounded Lipschitz on R, if and only if X is an ID random vector with Lévy
measure ν (and b = EX −

∫
|u|>1

uν(du)).

Theorem [B. A. and C.Houdré, 2019+]

Let X with E∥X∥ < +∞ and ν be a Lévy measure on Rd such that∫
∥u∥≥1

∥u∥ν(du) < +∞. Then,

EXf (X) = EX Ef (X) + E
∫

Rd
(f(X + u)− f(X)) uν(du),

for all f, bounded Lipschitz on Rd, if and only if X is an ID random vector with Lévy
measure ν (and b = EX −

∫
∥u∥>1

uν(du)).
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Some Observations

Corollary [B. A. and C.Houdré, 2019+]
Let α ∈ (1, 2) and let να be the Lévy measure

να(du) = I(0,+∞)(r)ISd−1(x) cα,d
rα+1

drσ(dx),

with cα,d > 0 and with σ the uniform measure on Sd−1. Let Xα ∼ ID(bα, 0, να) with
bα = −

∫
∥u∥≥1

uνα(du). Then, for all f ∈ S(Rd),

EXαf(Xα) = E
∫

Rd
(f(Xα + u)− f(Xα)) uνα(du) −→

α→2−
EZf(Z) = E∇(f)(Z),

where Z ∼ N (0, Id).
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Some Observations

Theorem [S. Cohen and J. Rosinski, 2007, Bernoulli]
Let ε > 0 and Xε ∼ ID(bε, 0, νε) with bε = −

∫
∥u∥≥1

uνε(du) such that

Σε =

∫
Rd

uutνε(du),

is non-singular. Then, as ε → 0+, X̃ε = Σ
−1/2
ε Xε

Law→ Z ∼ N (0, Id) ⇐⇒∫
⟨Σ−1

ε u;u⟩>κ

⟨Σ−1
ε u; u⟩νε(du) −→

ε→0+
0, κ > 0.

Corollary [B. A. and C.Houdré, 2019+]

Let the above convergence hold. Then, for all f ∈ S(Rd),

EX̃εf(X̃ε) = E
∫

Rd
(f(X̃ε + u)− f(X̃ε))uν̃ε(du) −→

ε→0+
EZf(Z) = E∇(f)(Z),

with Z ∼ N (0, Id).
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Characterizing SD Laws With
∫
∥u∥≤1 ∥u∥ν(du) < +∞

Theorem [B. A. and C.Houdré, 2019+]

Let X be a random vector in Rd. Let b ∈ Rd, let ν be a Lévy measure with∫
∥u∥≤1

∥u∥ν(du) < +∞, and with

ν(du) = I(0,+∞)(r)ISd−1(x)k(r)
r drσ(dx),

where σ is a finite positive measure on Sd−1 and where k(r) is a nonnegative continuous
function decreasing in r ∈ (0,+∞) and such that

lim
ε→0+

εk(ε) = 0, lim
R→+∞

k(R) = 0.

Let ν̃ be defined by ν̃(du) = I(0,+∞)(r)ISd−1(x)(−dk(r))σ(dx). Then,

E⟨X;∇(f)(X)⟩ = E⟨b0;∇(f)(X)⟩+
∫

Rd
(f(X + u)− f(X)) ν̃(du),

where b0 = b −
∫
∥u∥≤1

uν(du), for all f ∈ S
(
Rd) if and only if X is SD with b and Lévy

measure ν.
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Characterizing SD Laws

Theorem [B. A. and C.Houdré, 2019+]

Let X be a random vector in Rd. Let b ∈ Rd, let ν be a Lévy measure with

ν(du) = I(0,+∞)(r)ISd−1(x)k(r)
r drσ(dx),

where σ is a finite positive measure on Sd−1 and where k(r) is a nonnegative continuous
function decreasing in r ∈ (0,+∞) and such that

lim
ε→0+

εk(ε) = k(1), lim
R→+∞

k(R) = 0.

Let ν̃ be defined by ν̃(du) = I(0,+∞)(r)ISd−1(x)(−dk(r))σ(dx). Then,

E⟨X;∇(f)(X)⟩ = E⟨b̃;∇(f)(X)⟩+ E
∫

Rd

(
f(X + u)− f(X)− ⟨∇(f)(X); u⟩I∥u∥≤1

)
ν̃(du),

with b̃ = b − k(1)
∫
Sd−1 xσ(dx), for all f ∈ S

(
Rd), if and only if X is SD with b and

Lévy measure ν.
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Characterizing SD Laws

Remarks

Extend to the general case kx(r) (under additional technical conditions)
In the stable case, ν̃(du) = αν(du)
Direct part of the proof: a truncation procedure and an integration by parts
(boundary terms!)
Converse part of the proof: PDE techniques in the Fourier domain
Let X be SD with b, ν such that

∫
∥u∥≥1

∥u∥ν(du) < +∞ and with k as in the
previous theorem. For all f ∈ S(Rd),

E⟨X;∇(f)(X)⟩ = E⟨b̃;∇(f)(X)⟩+ E
∫

Rd

(
f(X + u)− f(X)− ⟨∇(f)(X); u⟩I∥u∥≤1

)
ν̃(du)

An integration by parts

E⟨X;∇(f)(X)⟩ = E⟨EX;∇(f)(X)⟩+ E
∫

Rd
⟨∇(f)(X + u)−∇(f)(X); u⟩ν(du).
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Stein’s Equation For SD Laws with finite first moment
Let X ∼ ID(b, 0, ν) be SD such that E∥X∥ < +∞, with c.f. φ and with ν such that

sup
x∈Sd−1

kx(a+) < +∞, a > 0.

Let h ∈ C∞
c (Rd) with M0(h) = sup

x∈Rd
|h(x)| ≤ 1, M1(h) = sup

x∈Rd
∥∇(h)(x)∥op ≤ 1,

M2(h) = sup
x∈Rd

∥D2(h)(x)∥op ≤ 1.

⟨(EX − x);∇(fh)(x)⟩+
∫

Rd
⟨∇(fh)(x + u)−∇(fh)(x); u⟩ν(du) = h(x)− Eh(X), x ∈ Rd.

Semigroup methods to solve the equation:

fh(x) = −
∫ +∞

0

(Pt(h)(x)− Eh(X))dt, x ∈ Rd

with

Pt(h)(x) =
∫

Rd
h(xe−t + y)dµt(y)

where µt has characteristic function φt(ξ) = φ(ξ)/φ(e−tξ). Moreover,

M1(fh) ≤ 1, M2(fh) ≤
1

2
.
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Stein’s Equation For SD Laws without finite first moment
Let X ∼ ID(b, 0, ν) be SD with c.f. φ such that ν

ν(du) = I(0,+∞)(r)ISd−1(x)kx(r)
r drσ(dx),

with kx(r) continuous in r ∈ (0,+∞), continuous in x ∈ Sd−1, with
lim

r→0+
r2kx(r) = 0, lim

r→+∞
kx(r) = 0, x ∈ Sd−1,

Assume that
There exists ε ∈ (0, 1) such that E∥X∥ε < +∞.
There exists β1 > 0, β2 > 0 and β3 ∈ (0, 1) such that

γ1 = sup
t≥0

(
eβ1t

∫
(1,+∞)×Sd−1

kx(etr)
r drσ(dx)

)
< +∞,

γ2 = sup
t≥0

(
eβ2t

∫
(0,1)×Sd−1

rkx(etr)drσ(dx)
)

< +∞,

and that,

γ3 = sup
t≥0

(
e−(1−β3)t

∥∥∥∥∥
∫

Sd−1

x
(∫ et

1

kx(r)dr
)
σ(dx)

∥∥∥∥∥
)

< +∞.
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Stein’s Equation For SD Laws without finite first moment

Assume also that, Xt, t ≥ 0, with c. f. φt(ξ) = φ(ξ)/φ(e−tξ) satisfies:

sup
t≥0

E ∥Xt∥ε < +∞.

Then, for all h ∈ C∞
c (Rd) with M0(h) ≤ 1, M1(h) ≤ 1 and M2(h) ≤ 1,

fh(x) = −
∫ +∞

0

(Pt(h)(x)− Eh(X))dt, x ∈ Rd

exists with M1(fh) ≤ 1, M2(fh) ≤ 1/2 and is a strong solution to

⟨b̃ − x;∇(fh)(x)⟩+
∫

Rd

(
fh(x + u)− fh(x)− ⟨∇(fh)(x); u⟩I∥u∥≤1

)
ν̃(du) = h(x)− Eh(X),

where ν̃ is given

ν̃(du) = I(0,+∞)(r)ISd−1(x)(−dkx(r))σ(dx),

and where b̃ = b −
∫
Sd−1 kx(1)xσ(dx).
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Stein’s Equation For SD Laws
Remarks

Stable laws with α ∈ (0, 1]

If the above assumptions hold and X such that∫
∥u∥≤1

∥u∥ν(du) < +∞, lim
ε→0+

εkx(ε) = 0, x ∈ Sd−1,

then, fh is a strong solution to

⟨b0 − x;∇(fh)(x)⟩+
∫

Rd

(
fh(x + u)− fh(x)

)
ν̃(du) = h(x)− Eh(X).

If the above assumptions hold and X such that∫
∥u∥≥1

∥u∥ν(du) < +∞, lim
R→+∞

Rkx(R) = 0, lim
ε→0+

ε2kx(ε) = 0, x ∈ Sd−1,

then, fh is a strong solution to

⟨EX − x;∇(fh)(x)⟩+
∫

Rd
⟨∇(fh)(x + u)−∇(fh)(x); u⟩ν(du) = h(x)− Eh(X).
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Why Does This Work?

Decomposability property

µ ∈ M1(Rd)

D(µ) = {c ∈ (0, 1), µ = Tc(µ) ∗ µc, µc ∈ M1(R
d)}

If µ is SD then D(µ) = (0, 1). In particular, (e−t)t>0 ⊂ D(µ).
Setting µt := µe−t , then

µt+s = µt ∗ Te−t(µs) s, t > 0.

Then, Pt(h)(x) =
∫
Rd h(xe−t + y)dµt(y) defines a semigroup on Cb(Rd) whose

invariante measure is µ.
Strong links between Urbanik decomposability semigroup (Urbanik, Jurek, Bunge)
and Generalized Mehler semigroup (Röckner, Bogachev, Schmuland, Lescot,
Wang.).
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An Application To Extreme Value Theory

Let X be a Gumbel random variable with distribution function F(x) := exp (− exp(−x)),
for x ∈ R, and Lévy Khintchine representation

φ(ξ) = exp
(

iξγ +

∫ +∞

0

(
eiξu − 1− iξu

) e−u

u(1− e−u)
du
)
, ξ ∈ R,

where γ is the Euler constant. Let (Yk)k≥1 be a i.i.d. sequence such that Y1 ∼ Exp(1).
Fact 1: max (Y1, . . . ,Yn)− log n Law−→

n→+∞
X.

Fact 2: Sn := max (Y1, . . . ,Yn)
Law
=
∑n

j=1

Yj
j .

Theorem, [B. A. and C.Houdré, 2019]
Then, for all n ≥ 1

dW2(Sn,X) := sup
h∈C∞

c (R),M0(h)≤1
M1(h),M2(h)≤1

|Eh(Sn)− Eh(X)| ≤ C
n ,

for some C > 0 independent of n.
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Sketch of Proof: 1

Let h ∈ C∞
c (R) with M0(h),M1(h),M2(h) ≤ 1.

|Eh(Sn)− Eh(X)| =
∣∣∣∣E(γ − Sn)fh

′(Sn) +

∫ +∞

0

(
fh

′(Sn + u)− fh
′(Sn)

) e−u

(1− e−u)
du
∣∣∣∣

≤
∣∣∣∣E(ESn − Sn)fh

′(Sn) +

∫ +∞

0

(
fh

′(Sn + u)− fh
′(Sn)

) e−u

(1− e−u)
du
∣∣∣∣

+ |γ − ESn| .

First, for all n ≥ 1

|γ − ESn| =

∣∣∣∣∣γ + ln n −
n∑

k=1

1

k

∣∣∣∣∣ ≤ C1

n ,

for some C1 > 0.
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Sketch of Proof: 2

Second, for all n ≥ 1

ESnfh
′(Sn) =

n∑
k=1

1

kEYkfh
′(Sn,k + k−1Yk)− ln n Efh

′(Sn),

=

n∑
k=1

1

k

∫ +∞

0

e−uEfh
′(Sn + k−1u)du − ln n Efh

′(Sn).

Thus, ∣∣∣∣E(ESn − Sn)fh
′(Sn) +

∫ +∞

0

(
fh

′(Sn + u)− fh
′(Sn)

) e−u

(1− e−u)
du
∣∣∣∣

=

∣∣∣∣E ∫ +∞

0

(
fh

′(Sn + u)− fh
′(Sn)

) e−nu

eu − 1
du
∣∣∣∣ ≤ 1

2

∫ +∞

0

e−nu

eu − 1
udu.
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Sketch of Proof: 3

Observe that, for all n ≥ 1 ∫ +∞

0

e−nu

eu − 1
udu = ζ(2, n + 1),

where ζ is the Hurwitz zeta function given by

ζ(2, n + 1) =

+∞∑
k=0

1

(k + n + 1)2
,

and, as n → +∞

ζ(2, n + 1) ≈ C2

n . □
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An Application To Poincaré-type Inequalities for SD laws

Definition, [B. A. and C.Houdré, 2019]

Let ν be a Lévy measure on Rd. Let Y be a centered random vector with law µY. A
Stein kernel of Y with respect to ν is a measurable function τY from Rd to Rd such that,∫

Rd
⟨y; f(y)⟩µY(dy) =

∫
Rd

(∫
Rd
⟨f(y + u)− f(y); τY(y + u)− τY(y)⟩ν(du)

)
µY(dy),

for all Rd-valued test function f for which both sides of the previous equality are well
defined. The Stein’s discrepancy of µY with respect to µX ∼ ID(−

∫
∥u∥≥1

uν(du), 0, ν) is
given by

S (µY||µX) = inf
(∫

Rd

∫
Rd

∥τY(y + u)− τY(y)− u∥2ν(du)µY(dy)
)1/2

,

where the infimum is taken over all Stein kernels of Y with respect to X, and is equal to
+∞ if no such Stein kernel exists.

29 / 34



An Application To Poincaré-type Inequalities for SD laws
Let X ∼ µX be SD centered with finite second moment and with ν such that

ν(du) = I(0,+∞)(r)ISd−1(x)kx(r)
r drσ(dx),

with
sup

x∈Sd−1

kx(a+) < +∞, a > 0.

Let Y ∼ µY be centered such that
ν ∗ µY << µY

E∥Y∥2 =
∫
Rd ∥u∥2ν(du) < +∞

There exists UY ≥ 1, for all regular f : Rd −→ Rd

E∥f(Y)− Ef(Y)∥2 ≤ UY E
∫

Rd
∥f(Y + u)− f(Y)∥2ν(du).

Theorem, [B. A. and C.Houdré, 2019]
Then,

dW2(µX, µY) ≤
1

2

(∫
Rd

∥u∥2ν(du)
)√

UY − 1.
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Sketch of Proof: 1

Let h ∈ H2 ∩ C∞
c (Rd).

−⟨x;∇(fh)(x)⟩+
∫

Rd
⟨∇(fh)(x + u)−∇(fh)(x); u⟩ν(du) = h(x)− Eh(X), x ∈ Rd,

and thus,

E

(
−⟨Y;∇(fh)(Y)⟩+

∫
Rd
⟨∇(fh)(Y + u)−∇(fh)(Y); u⟩ν(du)

)
= Eh(Y)− Eh(X).

Now,

Eh(Y)− Eh(X) = E

(∫
Rd
⟨∇(fh)(Y + u)−∇(fh)(Y); u − τY(Y + u) + τY(Y)⟩ν(du)

)
.
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Sketch of Proof: 2

By Cauchy-Schwarz,

|Eh(Y)− Eh(X)| ≤ 1

2

√∫
Rd

∥u∥2ν(du)
√

E
∫

Rd
∥τY(Y + u)− τY(Y)− u∥2ν(du).

Next expanding the square,

E
∫

Rd
∥τY(Y + u)− τY(Y)− u∥2ν(du) = E

∫
Rd

∥τY(Y + u)− τY(Y)∥2ν(du)

−
∫

Rd
∥u∥2ν(du),

and using the energy estimate

E
∫

Rd
∥τY(Y + u)− τY(Y)∥2ν(du) ≤ UY

∫
Rd

∥u∥2ν(du). □
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Final Results: Remarks and Perspectives

General ID case (with or without finite first moment) ?
Quantitative results for m-dependent sequences converging to ID laws ?
Links with functional inequalities and spectral problems for non-local Dirichlet
forms ? (work in progress)
Infinite Dimension ? Interactions with the geometry of Banach Spaces
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Thank Your Attention !
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