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1. Introduction
I Trees provide visual representation of the evolutionary relatedness

among organisms, species, or genes.
I Phylogenetic tree has become a powerful tool in studying evolution and

diversification in Biology.
I It finds wide applications in evolutionary biology, developmental biology

(cell lineages) and epidemiology. Such as

I Inferring evolutionary process from phylogenetic tree shape1;
I Studying diversification2;
I Study of pathogens3,3a.

I Tree shape is the signature of the forces that produce biodiversity4

I Fitting stochastic models to tree data helps infer macro-evolutionary
processes such as speciation and extinction rates.
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1Mooers & Heard (1997). Inferring evolutionary process from phylogenetic tree shape. Quart. Review Biol., 72,
31-54.

2Morlon (2014). Phylogenetic approaches for studying diversification. Ecology Letters, 17, 508-525.
3Poon et al. (2013). Mapping the Shapes of Phylogenetic Trees from Human and Zoonotic RNA Viruses. PLoS

One
3aColijin & Plazzotta (2017). A metric on phylogenetic tree shapes. Syst. Biol., 11, 113-126.
4Mooers & Heard (2002). Using Tree shape. Sys. Biol., 51, 833-834.



1. Introduction
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I T is a phylogenetic tree on X = {1, . . . ,5}, the set of leaves.
I All edges are directed away from the root, a (arrows not drawn).
I Binary tree (V (T ),E(T )), set of pendant edges denoted by E∗(T ).
I Each node is either of

degree 1 (for leaves);
degree 2 (root); or
degree 3 (the rest of internal nodes).
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Our objectives

I Given a tree T , to infer if this tree is more likely generated
by YHK model than by PDA model.

I Given a “tree feature” (index), to assess how good this
feature in discriminating one generative model from
another.

I YHK trees are observed to be more symmetric. Many tree
indices have been proposed to measure tree balance.

I Examples: Colless index and Sackin index
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1.2 Two random generative tree models: YHK & PDA

I Two common generative tree models: YHK (Yule-Harding-Kingsman)
model and PDA (Proportional-to-Distinguishable-Arrangements) model
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I YHK: Choose a pendant edge at random in T to form T ′.

I PDA: Choose an edge at random from all edges in T to form T ′.

I In this figure, the PDA model: T ′ = T [e9;x7] is obtained from T by
attaching the leaf labelled x7 to edge e9.
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1.2 Two generative tree models: YHK & PDA

Starting with a tree of 2 leaves, iteratively attach (manner to be specified) one
leaf at a time to grow the tree to its desired size.

I YHK, also known as equal-rates-Markov model: all extant lineages have
equal probabilities of speciating at an instant.

I Uniformly sample a pendant edge from the tree’s pendant edges,
and attach a new leaf to it.

I PDA: Each “possible arrangement” of n leaves into a tree is equally
likely.

I Uniformly sample an edge from the present tree’s edges, and
attach a new leaf to it.
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2.1 Subtree
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I A cherry–a subtree with two leaves.
For examples,
{x1,x5} (together with their parent) forms a cherry, and we think of three
edges: e7,e1,e5

{x2,x4} forms another cherry with edges: e9,e2,e4.
I A pitchfork–a subtree with three leaves.

E.g., {x1,x5,x3} with their most recent common ancestor; 5-edge:
e8,e7,e3,e1,e5.
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2.2 Subtrees of sizes 2 and 3 (Cherry and Pitchfork)

I It has been observed that YHK generated trees are more “symmetric”:
and hence contain more cherries.

Definitions
I An: Number of pitchforks in a tree with n leaves
I Cn: Number of cherries in a tree with n leaves
I Let hn denote the joint pmf of An and Cn under the YHK model. That is,

hn(a,c) = PY [An = a,Cn = c].

I Let fn be the pmf of An; and gn pmf of Cn under the YHK model.

I Denote h̃n, f̃n, g̃n the counterparts under the PDA model.
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Thm 1 We have the following recurrence relations.

(a) YHK Model
For n ≥ 3,

hn+1(a,c) =
2a
n

hn(a,c) +
a + 1

n
hn(a + 1,c−1)

+
2(c−a + 1)

n
hn(a−1,c) +

n−a−2c + 2
n

hn(a,c−1);

and h3(1,1) = 1, and h3(a,c) = 0 if (a,c) 6= (1,1).

(b) PDA Model
For n ≥ 3,

h̃n+1(a,c) =
n + 3a−c−1

2n−1
h̃n(a,c) +

a + 1
2n−1

h̃n(a + 1,c−1)

+
3(c−a + 1)

2n−1
h̃n(a−1,c) +

n−a−2c + 2
2n−1

h̃n(a,c−1);

and h̃3(1,1) = 1, and h̃3(a,c) = 0 if (a,c) 6= (1,1).
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Key step in the proof of Thm 1

Edge decomposition for a PDA tree: Partition E(T ) into

E1(T ): pendant edges that are contained in a pitchfork but not in a cherry;

E2(T ): edges that are contained in a cherry but not in a pitchfork;

E3(T ): pendant edges that are contained in neither a pitchfork nor a cherry;

E4(T ) = E(T )\ (E1(T )∪E2(T )∪E3(T )).
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E1(T ) = {e3}, E2(T ) = {e2,e4,e9}, E3(T ) = {e6},
E4(T ) = {e0,e1,e5,e7,e8,e10}.
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Key step in the proof of Thm 1

Edge decomposition for a PDA tree

I Track the changes in the numbers of pitchforks and cherries when a
new leaf join the tree T at Ei (T ):

(A(T ′),C(T ′)) =


(A(T )−1,C(T ) + 1), e ∈ E1(T ),

(A(T ) + 1,C(T )), e ∈ E2(T ),

(A(T ),C(T ) + 1), e ∈ E3(T ),

(A(T ),C(T )), e ∈ E4(T ),

and

|E1(T )| = A(T ),

|E2(T )| = 3(A(T )−C(T )),

|E3(T )| = n−A(T )−2C(T ),

|E4(T )| = n−1 + 3A(T )−C(T ).
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Thm 2 Denote expectation under YHK (resp., PDA) model by EY (resp.,
EU ). Let φ : R×R−→ R. Then, for n ≥ 4,

nEY [φ(An+1,Cn+1)] = 2EY [Anφ(An,Cn)]

+EY [Anφ(An−1,Cn + 1)]

+2EY [(Cn−An)φ(An + 1,Cn)]

+EY [(n−An−2Cn)φ(An,Cn + 1)];

(2n−1)EU [φ(An+1,Cn+1)] = EU [(n + 3An−Cn−1)φ(An,Cn)]

+EU [Anφ(An−1,Cn + 1)]

+3EU [(Cn−An)φ(An + 1,Cn)]

+EU [(n−An−2Cn)φ(An,Cn + 1)].
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Special cases

(1) Let ψ : R−→ R be any function.

(a) Define φ(x ,y) = ψ(y), we have

nEY [ψ(Cn+1)] = EY [2Cnψ(Cn)+(n−2Cn)ψ(Cn +1)];
(2n−1)EU [ψ(Cn+1)] = EU [(n+2Cn−1)ψ(Cn)

+(n−2Cn)ψ(Cn +1)].

(b) Define φ(x ,y) = Ik (y), we have

ngn+1(k) = 2k gn(k)+(n−2k +2)gn(k −1);
(2n−1)g̃n+1(k) = (n+2k −1) g̃n(k)+(n−2k +2)g̃n(k −1),

for n ≥ 3 and k ≥ 1.

(c) Take φ(x ,y) = y to derive EY [Cn] and EU [Cn];

(d) φ(x ,y) = y2 to derive VarY [Cn] and VarU [Cn].
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On the average

I more cherries with less variation in a YHK tree than in a PDA tree:

EY [Cn] = n
3 > EU [Cn] = n(n−1)

2(2n−3) ∼
n
4 ;

VarY [Cn] = 2n
45 < VarU [Cn] = n(n−1)(n−2)(n−3)

2(2n−3)2(2n−5) ∼
n
16 ;

I more pitchforks but also with more variation in a YHK tree than in a
PDA tree:

EY [An] =
n
6 > EU [An] =

n(n−1)(n−2)
2(2n−3)(2n−5) ∼ n

8

VarY [An] =
23n
420 > VarU [An] =

3n(n−1)(n−2)(n−3)(4n3−40n2+123n−110)
4(2n−3)2(2n−5)2(2n−7)(2n−9)

∼ 3n
64 ;

I Correlation of numbers of cherries and pitchforks is constant
(independent of n) under YHK; whereas correlation = O(1/n) under
PDA:

CorY (An,Cn) =−
√

14
69

; CorU(An,Cn)∼
−1√
3n

.
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We examine the likelihood ratio of the number of cherries under YHK versus
PDA: fn(k)/f̃n(k). It is monotone in k for fixed n.
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3.1 Model-based total variation distance between YHK and PDA

I Definition We define a total variation distance between YHK model and
PDA model on the collection of trees with n leaves as

mtvn(YHK ,PDA) :=
1
2 ∑

T∈Tn

|PY (T )−PU(T )|.

I For T ∈Tn, it is known

PU(T ) =
1

(2n−3)!!
and PY (T ) =

2n−1

n!π(T )

where
π(T ) := ∏

v∈
◦

V

(Λ(v)−1)

where
◦
V denotes the set of internal nodes of T , and Λ(v) is the number

of descendants of v (Semple & Steel, 2003).
I An application: H0 : YHK vs H1 : PDA,

power ≤ α + mtvn(YHK ,PDA).
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I By exhaustive enumeration, we computed the numerical values of
mtvn(YHK ,PDA) for n = 3, . . . ,20.

I For larger n, we estimate mtvn(YHK ,PDA) by simulation.
Rewrite

mtvn(YHK ,PDA) = ∑
T∈Tn

[PY (Y )−PU(T )]+

= ∑
T∈Tn

[
PY (Y )

PU(T )
−1
]
+

PU(T ) = EU [R]

where R : Tn→ R defined as R(T ) =
[

PY (Y )
PU (T )

−1
]
+

.

Sample T1,T2, . . . ,Tm from Tn according to the PDA model. Compute
R(T1),R(T2), . . . ,R(Tm). And

1
m

m

∑
i=1

R(Ti )≈ EU [R] = mtvn(YHK ,PDA).
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I Simulation is conducted up to n = 80.
I We plot − log(1−mtvn(YHK ,PDA)) as a function of n, suggesting

mtvn(YHK ,PDA)≈ 1−e−α−βn.
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3.2 Discrimination Efficiency

I For a chosen feature of a tree T ∈Tn, we propose a score,
discrimination efficiency (DE), to assess the extent this feature is able to
discriminate YHK from PDA.

I For examples,
I Colless index of balanced tree

Colless(T ) = ∑
v∈

◦
V

|R(v)−L(v)|

where
◦
V denotes the set of interior vertices; R(v) (resp., L(v))

denotes the number of descendants by the right (left) child of v .

I Number of cherries in T , Cn(T )

I Joint numbers of cherries and pitchforks in T , (An(T ),Cn(T ))
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3.2 Discrimination Efficiency

I Suppose we consider a tree index In on Tn

mtvIn (YHK ,PDA) := dtv (L (In|YHK ),L (In|PDA))

=
1
2 ∑

a
|gn(a)− g̃n(a)|

where gn(a) = ∑Py (T ) where the sum is taken over all T ∈Tn with
In(T ) = a.

I Triangle inequality implies

0≤mtvIn (YHK ,PDA)≤mtvn(YHK ,PDA).

I Define discrimination efficiency of index In:

DE(Cn) := mtvCn
(YHK ,PDA)/mtvn(YHK ,PDA) ∈ [0,1].
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3.2 Discrimination Efficiency

I Write Tn(a) = {T ∈Tn : In(T ) = a}.

I Since

mtvIn (YHK ,PDA) =
1
2 ∑

a

∣∣∣∣∣ ∑
T∈Tn(k)

[Py (T )−PU(T )]

∣∣∣∣∣ ,
index In is optimal
⇔ for each a, Py (T )−PU(T ) is of the same sign for all T ∈Tn(a)

⇔ for each a, Py (T ) is a constant

⇔ for each a, π(T ) = ∏
v∈

◦
V

(Λ(v)−1) is a constant

I This leads to the tree index: ∑
v∈

◦
V

log(Λ(v)−1) one that is proposed by

Blum and Francois (2006)5.
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5Which random processes describe the tree of life? A large scale study of
phylogenetic tree imbalance. Sys. Biol., 55, 685-691



4 Work in progress

4.1 Extend the results to unrooted trees

I Studying unrooted trees is of interest: many inference methods return
unrooted trees first. Then some ways to root this tree if a rooted tree is
desired.

I C + Thompson + Wu observed the edge decomposition step can be
modified to handle unrooted tree.
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4 Work in progress

4.2 We are interested in the correlation of the number of nodes with
a-descendants and the number of nodes of b-descendants

Number of cherries = Number of nodes with 2-descendants;
Number of pitchforks = Number of nodes with 3-descendants.

I Recall YHK: ρn,YHK (2,3) is a constant in n.

C + Wu proved that the same is true for general a and b.
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Under PDA model: correlation can be positive!

Left panel: a = 2,b = 3, the correlation is negative for all n.

Middle panel: a = 3,b = 4, the correlation changes sign from −ve to +ve.

Right panel: a = 4,b = 5, the correlation is positive for all n.

C + Wu gave a characterization for which pair (a,b) will lead to left panel and
right panel.
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4 Work in progress

4.3 Two one-parameter families of evolutionary models

4.3.a. Aldous’ β -branch split model (1996, 2001)
I Prob of left sister clade and right sister clade ontain i leaves and n− i

leaves respectively is

pβ (i |n) =
1

an(β )

Γ(β + i + 1)Γ(β + n− i + 1)

Γ(i + 1)Γ(n− i + 1)
, 1≤ i ≤ n−1.

I β = 0: YHK
β =− 3

2 : PDA
I Yule model did not fit the empirical tree data well.
I Many empirical trees are consistent with Aldous’ branch split

model: β ≈−1.6
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6AB model in previous plot corresponds to β =−1



4 Work in progress

4.3 Two one-parameter families of generative models

4.3.b. Ford’s α model (2005)

I Starting with a small tree, grow it to the desired size by adding one leaf
at a time.

I Fix α ∈ [0,1].
Attach a new leaf to the current tree’s internal edge with probability α;
and to a pendant edge 1−α.

I YHK: α = 0;
PDA: α = 1

2 .

p29


