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1. Introduction
> Trees provide visual representation of the evolutionary relatedness
among organisms, species, or genes.

» Phylogenetic tree has become a powerful tool in studying evolution and
diversification in Biology.

» It finds wide applications in evolutionary biology, developmental biology
(cell lineages) and epidemiology. Such as

» Inferring evolutionary process from phylogenetic tree shape’;
» Studying diversification?;
» Study of pathogens3:34,

» Tree shape is the signature of the forces that produce biodiversity*

Fitting stochastic models to tree data helps infer macro-evolutionary
processes such as speciation and extinction rates.
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1 Mooers & Heard (1997). Inferring evolutionary process from phylogenetic tree shape. Quart. Review Biol., 72,
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1. Introduction
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T

T is a phylogenetic tree on 2" = {1,...,5}, the set of leaves.

All edges are directed away from the root, a (arrows not drawn).
Binary tree (V(T),E(T)), set of pendant edges denoted by E*(T).
Each node is either of

degree 1 (for leaves);

degree 2 (root); or

degree 3 (the rest of internal nodes).
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Our objectives

» Given atree T, to infer if this tree is more likely generated
by YHK model than by PDA model.

» Given a “tree feature” (index), to assess how good this
feature in discriminating one generative model from
another.

» YHK trees are observed to be more symmetric. Many tree
indices have been proposed to measure tree balance.

» Examples: Colless index and Sackin index
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1.2 Two random generative tree models: YHK & PDA

» Two common generative tree models: YHK (Yule-Harding-Kingsman)
model and PDA (Proportional-to-Distinguishable-Arrangements) model

» YHK: Choose a pendant edge at random in T to form T’.
» PDA: Choose an edge at random from all edges in T to form 7.

> In this figure, the PDA model: T' = T[eg; X7] is obtained from T by
attaching the leaf labelled x7 to edge eg.
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1.2 Two generative tree models: YHK & PDA

Starting with a tree of 2 leaves, iteratively attach (manner to be specified) one
leaf at a time to grow the tree to its desired size.

> YHK, also known as equal-rates-Markov model: all extant lineages have
equal probabilities of speciating at an instant.

» Uniformly sample a pendant edge from the tree’s pendant edges,
and attach a new leaf to it.

» PDA: Each “possible arrangement” of n leaves into a tree is equally
likely.

» Uniformly sample an edge from the present tree’s edges, and
attach a new leaf to it.
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2.1 Subtree

> A cherry—a subtree with two leaves.
For examples,
{xy,x5} (together with their parent) forms a cherry, and we think of three
edges: e7,eq,65
{X2, X4} forms another cherry with edges: eg, s, 4.
> A pitchfork—a subtree with three leaves.

E.g., {xq,Xs, X3} with their most recent common ancestor; 5-edge:
€g,€7,€3,61,65.
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2.2 Subtrees of sizes 2 and 3 (Cherry and Pitchfork)

>

It has been observed that YHK generated trees are more “symmetric”:
and hence contain more cherries.

Definitions

> Ap: Number of pitchforks in a tree with n leaves

» Cp: Number of cherries in a tree with n leaves
> Let h, denote the joint pmf of A, and C,, under the YHK model. That is,

hn(a,c) = Py[An=a,Cnh=c].

Let f, be the pmf of Ap; and g, pmf of C, under the YHK model.

Denote En,7n,§n the counterparts under the PDA model.
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Thm 1 We have the following recurrence relations.
(a) YHK Model

For n> 3,
2a a+1

Pnst(@c) = “2ho(ac)+ T Ihn(at1,0-1)
2(c—a+1 —a—-2c+2
+7(C na+ )hn(a—1,C)+7n a - et hn(a,c—1);

and h3(1,1) =1, and hz(a,c) =0if (a,c) # (1,1).

(b) PDA Model
For n> 3,
=~ n+3a—c—1+ a+1 -
hnyi(ac) = ?hn(a’cﬂ'mhn(a"‘tc*”
3(c—a+1)~ n—a-2c+2+ )

and h3(1,1) =1, and hg(a,c) = 01f (a,c) # (1,1).
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Key step in the proof of Thm 1

Edge decomposition for a PDA tree: Partition E(T) into
Eq(

Ex(T

Ex(T

E4(T

pendant edges that are contained in a pitchfork but not in a cherry;
edges that are contained in a cherry but not in a pitchfork;
pendant edges that are contained in neither a pitchfork nor a cherry;

T):
):
):
) =E(M\(E1(T)UEx(T) U E5(T)).

Ei(T)={es}, Ex(T)={eo,e4,€9}, E3(T) = {es},
E4(T) = {907617957677987610}'
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Key step in the proof of Thm 1
Edge decomposition for a PDA tree

» Track the changes in the numbers of pitchforks and cherries when a
new leaf join the tree T at E;(T):

(A(T)—1,C(T)+1), eecE(T),
/ ) (A(T)+1,C(T)), ec Ex(T),
(A(T). C(T)) = (A(T),C(T)+1), ee E3(T),
(A(T),C(T)), e E4(T),
and
[E+(T)] = A(T),
[E2(T) = 3(A(T)-C(T)),
|E3(T)] = n—A(T)-2C(T),
|E4(T)] = n—143A(T)-C(T).
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Thm 2 Denote expectation under YHK (resp., PDA) model by Ey (resp.,
Ey). Let ¢ : R xR — R. Then, for n > 4,

NEy[¢(Ant1,Cni1)] = 2Ey[An¢(An, Cn)
+Ey[An¢(An—1,Cn+1)]
+2Ey[(Cn—An)¢(An+1,Cn)l
+Ey[(n—An—2Cn)¢(An,Cn+1)];

(@n=1)Ey[9(Ant1,Cn1)] = Eyl[(n+3An—Cn—1)9(An, Cn)]
+Ey[An¢(An—1,Cn+1)]
+3Ey[(Cn—An)o(An+1,Cn)]
+Ey[(n—An—2Cn)o(An, Cn+1)].
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Special cases

(1) Let y: R — R be any function.
(a) Define ¢(x,y) = w(y), we have
NEy[W(Cni1)] = Ey[2Chy(Cp)+(n—2Cn)y(Cn+1)];
(2n=1)Ey[y(Cni1)] = Euyl(n+2Ch—1)y(Cn)
+(n—2Ch)y(Cr+1)].
(b) Define ¢(x,y) = Ik(y), we have
ngni1(k) = 2kgn(k)+(n—2k+2)gn(k —1);
(2n—1)Gn11(k) (n+2k—1)gn(k) +(n—2k +2)gn(k — 1),

forn>3 and k > 1.

(c) Take ¢(x,y) =y to derive Ey[Cy] and Ey[Cy];
(d) ¢(x,y) = y? to derive Vary[C,] and Vary[Ch).
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On the average

» more cherries with less variation in a YHK tree than in a PDA tree:

Ey[Cll=§ > EulCil=g5nd~ 1

Vary[Cnl = 28 < Vary[Cn]= % o

» more pitchforks but also with more variation in a YHK tree than in a
PDA tree:

2
EvlAd=§ > EulAnl= 53t ~ §
3 1 2)(n—=3)(4n®—40n?+123n—110
VarylAn = 33 > VarylAn) = S g s Y ~ &

> Correlation of numbers of cherries and pitchforks is constant
(independent of n) under YHK; whereas correlation = O(1/n) under
PDA:
14 -1

COfY(An, Cn) = — @; COfu(An, Cn) ~ E
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We examine the likelihood ratio of the number of cherries under YHK versus
PDA: f,,(k)/?,,(k). It is monotone in k for fixed n.

n =200
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3.1 Model-based total variation distance between YHK and PDA
» Definition We define a total variation distance between YHK model and
PDA model on the collection of trees with n leaves as

mtvn( YHK , PDA) ;:% Y. [Py(T)—Puy(T)|.
TeI,

» For T € 9, itis known

1 2n-1

@n—3yn and Py(T)= ——=

Pu(T) = n(T)

where
n(T):= [T (A(v) 1)

vev

where \O/ denotes the set of internal nodes of T, and A(v) is the number
of descendants of v (Semple & Steel, 2003).

> An application: Hy : YHK vs Hy : PDA,
power < o+ mtvy(YHK, PDA).
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» By exhaustive enumeration, we computed the numerical values of
mtva(YHK, PDA) for n=3,...,20.

> For larger n, we estimate mtvy( YHK, PDA) by simulation.
Rewrite

mtva(YHK,PDA) = Y [Py(Y)—Pu(T)]+
TeI,
B Py(Y) _
- L|mm 1LPU(T> Ey[A]

where R: 7, - R defined as R(T) = [ A7) ~1] .

Sample Ty, To,..., Ty from 9, according to the PDA model. Compute
R(T1).R(T2),...,R(Tm). And

m
% Y R(T:) ~ Ey[R] = mtva( YHK, PDA).
i=
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Plot of simulated mtv and exact mtv

o 2 w© © B

mmips

FiGUurReE 1. Exact and approximate total variation distances between
tree models. Blue diamonds, red circles and orange triangles denote
mtv(n; Y HK, PDA), mtv(n;Y HK, AB) and mtv(n; PDA, AB) respectively
Solid plotting characters and hollow plotting characters indicate exact values
and approximate values by simulation respectively. The lines denote the fitted
curves by regression.

» Simulation is conducted up to n = 80.
» We plot —log (1 — mtvy( YHK, PDA)) as a function of n,

mtva(YHK, PDA) ~ 1 — e 1.

suggesting
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3.2 Discrimination Efficiency

» For a chosen feature of a tree T € .7, we propose a score,
discrimination efficiency (DE), to assess the extent this feature is able to
discriminate YHK from PDA.

» For examples,
» Colless index of balanced tree

Colless(T) = Z |R(v) — L(v)|

veV

where V denotes the set of interior vertices; R(v) (resp., L(v))
denotes the number of descendants by the right (left) child of v.

» Number of cherries in T, Cn(T)

» Joint numbers of cherries and pitchforks in T, (An(T),Cn(T))
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3.2 Discrimination Efficiency

» Suppose we consider a tree index I, on J,

miv; (YHK,PDA) = dy (Z(In]YHK), Z(In|PDA))

= 3Llon@)-an(a)

where gn(a) =Y. Py(T) where the sum is taken over all T € .7, with

» Triangle inequality implies
0 < mtv; (YHK,PDA) < mivp(YHK, PDA).

» Define discrimination efficiency of index In:
DE(Cp) := mivg, (YHK, PDA)/mtvp( YHK, PDA) € [0,1].
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3.2 Discrimination Efficiency

> Write Ih(a) ={T € In: In(T) = a}.

» Since

mtv, (YHK.PDA)= L Y| Y [P,(T)— Py(T)]l.
23 1T

index I, is optimal
« for each a, P,(T)— Py(T) is of the same sign for all T € Fj(a)

« for each a, Py(T) is a constant

& foreach a, 7(T)=1] -(A(v)—1)is a constant
vey

> This leads to the tree index: Zve‘c/log(/\(v) —1) one that is proposed by
Blum and Francois (2006)°.
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5Which random processes describe the tree of life? A large scale study of
phylogenetic tree imbalance. Sys. Biol., 55, 685-691



4 Work in progress
4.1 Extend the results to unrooted trees

» Studying unrooted trees is of interest: many inference methods return
unrooted trees first. Then some ways to root this tree if a rooted tree is
desired.

» C + Thompson + Wu observed the edge decomposition step can be
modified to handle unrooted tree.

p25



4 Work in progress

4.2 We are interested in the correlation of the number of nodes with
a-descendants and the number of nodes of b-descendants

Number of cherries = Number of nodes with 2-descendants;
Number of pitchforks = Number of nodes with 3-descendants.

> Recall YHK: p, yHk(2,3) is a constant in n.

C + Wu proved that the same is true for general a and b.
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Under PDA model: correlation can be positive!

Left panel: a=2,b =3, the correlation is negative for all n.
Middle panel: a = 3,b = 4, the correlation changes sign from —ve to +ve.

Right panel: a=4,b =5, the correlation is positive for all n.

C + Wu gave a characterization for which pair (a, b) will lead to left panel and
right panel.
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4 Work in progress
4.3 Two one-parameter families of evolutionary models
4.3.a. Aldous’ B-branch split model (1996, 2001)

» Prob of left sister clade and right sister clade ontain j leaves and n—

leaves respectively is

r(ﬁ+i+1)r(ﬁ+n—i+1).

Pelin = 2 By~ Tar (=it 1) t<isn-t.

» B=0: YHK
B=-3:PDA

> Yule model did not fit the empirical tree data well.

» Many empirical trees are consistent with Aldous’ branch split
model: B~ —1.8

5AB model in previous plot corresponds to = —1
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4 Work in progress
4.3 Two one-parameter families of generative models
4.3.b. Ford’s o model (2005)
» Starting with a small tree, grow it to the desired size by adding one leaf
at a time.
> Fix a €[0,1].

Attach a new leaf to the current tree’s internal edge with probability a;
and to a pendant edge 1 — .

» YHK: a =0;
PDA: o = }.
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