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Stein’s method

Chi-Square Statistics

Chi-Square Statistics

Fan, Hung, Wong (1997) “One of the most celebrated folklores in
statistics is the theory of maximum likelihood ratio statistics”
Under smoothness conditions, the null distribution of −2 log Λ
tends to a chi-square distribution as the sample size tends to infinity

Proof:
asymptotic normality of the MLE
multivariate normal approximation

Problems:
Bound on the rate of convergence?
Chi-square approximation may hold even when no underlying
normality (Luk (1994), Fan, Hung, Wong (1997) )
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Stein’s method

Stein’s method and h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Stein’s Method for standard normal

Stein (1972) Z ∼ N (0, 1) if and only if for all smooth functions f

Ef ′(Z ) = EZf (Z )

For any smooth function h there is a smooth function f = fh:

h(x)− Nh = f ′(x)− xf (x) Stein equation

Here Nh is the standard normal expectation of h.
Hence for any random variable W , smooth h, we have

Eh(W )− Nh = Ef ′(W )− EWf (W ).
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Other distributions

Stein’s method has been extended to many other distributions:
Poisson (Chen 1975)
multivariate normal (Goetze 1992, Barbour 1990)
compound Poisson (Barbour, Chen and Loh 1992)
Binomial (Ehm 1991)
Gamma (Luk 1994)
Beta (Goldstein and R. 2013)
variance Gamma (Gaunt 2013)
Laplace (Pyke and Ren 2015)
. . .
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Stein’s method and h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Stein’s method in a nutshell
For µ a target distribution, with support I:
1. Find a suitable operator A and a wide class of functions F(A)

such that X ∼ µ if and only if for all functions f ∈ F(A),

EAf (X ) = 0.

2. Let H(I) be a measure-determining class on I and X ∼ µ.
For each h ∈ H find a solution f = fh ∈ F(A) of the

h(x)− Eh(X ) = Af (x).

Then for any random element W ,

Eh(W )− Eh(X ) = EAf (W ).
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Stein’s method and h(x) − χ2
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2 (p − x)f ′(x)

Chisquare distributions
Operator for χ2

p:

Af (x) = xf ′′(x) +
1
2

(p − x)f ′(x)

(Luk 1994: Gamma(r , λ) ). Stein equation:

(χ2
p) h(x)− χ2

ph = xf ′′(x) +
1
2

(p − x)f ′(x)

where χ2
ph is the expectation of h under the χ2

p-distribution

Thus, for any random variable W , smooth test function h,

Eh(W )− χ2
ph = EWf ′′(W ) +

1
2
E (p −W )f ′(W ).
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Stein’s method and h(x) − χ2
ph = xf ′′(x) + 1
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Bounds on the solutions of the Stein equation

Stein equation:

(χ2
p) h(x)− χ2

ph = xf ′′(x) +
1
2

(p − x)f ′(x)

If h is bounded and has three bounded derivatives, then the Stein
equation (χ2

p) has solution f which satisfies

‖f (k)‖ 6 4
p + k − 1

(
3‖g (k−1‖+ ‖g (k−2)‖

)
for k = 2, 3, 4.
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Three proofs of a simple fact
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Example: squared sum

Xi , i = 1, . . . , n i.i.d. mean zero, variance one, exisiting 8th moment

S =
1√
n

n∑
i=1

Xi and W = S2

Theorem (R. 2005)

For h smooth,

|Eh(W )− χ2
(1)h| 6

EX 8

n
(428 + 2375|EX 3|)

3∑
`=0

‖h(`)‖.
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Sketch of the first proof: relate to standard normal

Want
2EWf ′′(W ) + E(1−W )f ′(W ).

Put g(s) = sf ′(s2), then

g ′(s) = f ′(s2) + 2s2f ′′(s2)

and

2EWf ′′(W ) + E(1−W )f ′(W ) = Eg ′(S)− ESg(S).

Now proceed as in N (0, 1):
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Put Si = 1√
n

∑
j 6=i Xj . Then by Taylor expansion,

ESg(S) =
1√
n

n∑
i=1

EXig(S)

=
1√
n

n∑
i=1

EXig(Si ) +
1
n

n∑
i=1

EX 2
i g
′(Si ) + R1

=
1
n

n∑
i=1

Eg ′(Si ) + R1

= Eg ′(S) + R1 + R2.
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Key for bounding the remainder terms: symmetry

Note that g ′′ is antisymmetric, g ′′(−s) = −g ′′(s), so for
Z ∼ N (0, 1) we have

Eg ′′(Z ) = 0.

(Almost) routine now to show that

|Eg ′′(S)| ≤ c(f )√
n

for some c(f ).

Combining these bounds show a bound on the distance to
Chisquare(1) for smooth test functions which is of order 1

n .

We can calculate the constant c(f ) explicitly.
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Application: Pearson’s Chi-square Statistic

n balls thrown into m boxes independently; pi = P(X in box i);
Ui = number of balls in box i , i = 1, . . . ,m; then

W =
m∑
i=1

(Ui − npi )
2

npi
≈ χ2

m−1 as n→∞.

Rule of thumb: npi ≥ 5 for at least 80 % of the cells.
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Theorem (Pickett 2005; Gaunt, Pickett and R. 2017)

Let (U1, . . . ,Um) represent the multinomial vector of n > 2
observed counts, where m > 2, and suppose that npj > 1 for all
j = 1, . . . ,m. Denote the Pearson statistic by W . Let h ∈ C 5

b (R+).
Then

|Eh(W )− χ2
(m−1)h|

6 4
(m+1)n

(∑m
j=1

1√
pj

)2

{19‖h‖+ 366‖h′‖+ 2016‖h′′‖

+5264‖h(3)‖+ 106965‖h(4)‖+ 302922‖h(5)‖}.
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2 (p − x)f ′(x)

Notes

The theorem applies for all n.

The dependence on n is optimal.

The numerical constants may not be optimal.
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2 (p − x)f ′(x)

A key argument in our proof is that t(s) = s2 is symmetric. Hence
g(s) = sf ′(s2) is antisymmetric.

More generally we can consider test functions h(t) where t is a
symmetric function.

We could have used a multivariate normal approximation with
symmetry arguments.
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ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Stein’s method for multivariate normal approximation

(Götze’s (1993)) Let t : Rd → R be continuous and let Z have
standard d-dimensional normal distribution. Let Σ be non-negative
definite. A multivariate normal Stein equation with test function
h(t(·)) is

∇TΣ∇f (w)− wT∇f (w) = h(t(w))− Eh(t(Σ1/2Z)).

We can bound |Eh(t(W))− Eh(t(Σ1/2Z))| by solving the MVN
Stein equation for f and then bounding

E[∇TΣ∇f (W)−WT∇f (W)].

Problem: Depending on t the derivatives of f may not be bounded.
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Example: squared sum

Xi , i = 1, . . . , n i.i.d. mean zero, variance one, S = 1√
n

∑n
i=1 Xi

and W = S2 so W = t(X1, . . . ,Xn) with

t(x1, . . . , xn) =
1
n

(
n∑

i=1

xi

)2

.

Then
∂

∂xj
t(x1, . . . , xn) =

2
n

n∑
i=1

xi

is not bounded. Note ∂2

∂xi∂xj
t(x1, . . . , xn) = 2

n and all higher
derivatives vanish.
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Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Let m ≥ 1, A ≥ 0, B1, . . . ,Bd ≥ 0, r1, . . . , rd ≥ 0 and
P(w) := A +

∑d
i=1 Bi |wi |ri . Take t : Rd → R such that ∀w ∈ Rd ,∣∣∣∣ ∂kt(w)∏k
j=1 ∂wij

∣∣∣∣m/k 6 P(w), k = 1, . . . ,m.

We say then that t ∈ Cm
P (Rd).

Write hm =
∑m

j=1 ‖h(j)‖ 1
j!

∑j
i=0(−1)j−i

(j
i

)
im.

Suppose that h ∈ Cm
b (R). Let Zi ∼ N(0, σii ). Then, for all

w ∈ Rd , the solution f of the MVN Stein equation for h(t) satisfies∣∣∣∣ ∂mf (w)∏m
j=1 ∂wij

∣∣∣∣ 6 hm
m

[
A +

d∑
i=1

2riBi

(
|wi |ri + E|Zi |ri

)]
.

June 24, 2019 Stein’s method 21



Stein’s method

Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1
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Application: Complete block design

This approach generalises to local dependence. Take Xij ,
i = 1, . . . , n, j = 1, . . . , d mean zero random variables; suppose
that X1,j , . . . ,Xn,j are independent for a fixed j , but that the
random variables Xi ,1, . . . ,Xi ,d may be dependent for any fixed i .

For j = 1, . . . , d , let Wj = 1√
n

∑n
i=1 Xij and denote

W = (W1, . . . ,Wd)T with covariance matrix Σ.
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Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Theorem (GR 2016)

Assume that t ∈ C 6
P(Rd) is a symmetric function and that

E|Xij |rk+4 <∞ for all i , j and 1 6 k 6 d . Then, for h ∈ C 6
b (R),

|Eh(t(W))− Eh(t(Σ1/2Z))| 6
h4

n
c1(P) +

h6

n
c2(P),

where c1(P) contains mixed absolute moments up to order
maxk(rk) + 4 and c2(P) contains mixed absolute moments up to
order maxk(rk) + 3 and can be given explicitly.
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Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Example: the power divergence family

Let (U1, . . . ,Ur ) represent the multinomial vector of n > 2 observed
counts, where r > 2, and suppose that npj > 1 for all j = 1, . . . , r .
The power divergence statistic with index λ ∈ R is given by

Tλ =
2

λ(λ+ 1)

r∑
j=1

Uj

[(
Uj

npj

)λ
− 1
]

;

λ = 1 gives the Pearson statistic.

Tλ(W) is asymptotically χ2
(r−1) distributed for all λ ∈ R.

We obtain an explicit 1
n -bound for λ ∈ {1, 2, . . .} or λ ≥ 5.

The proof uses that Tλ(W) is a sum of squares plus a second term,
and the second term is small.

June 24, 2019 Stein’s method 24



Stein’s method

Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1
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Sketch of the third proof: no recourse to normal

Let Zi ,j , i = 1, . . . , r , j = 1, . . . , n be independent mean zero
variance 1 random variables such that Zi ,j has the same distribution
as Zi ,`, for i = 1, . . . , r , and all mixed moments up to order 8 exist.
Let

T =
1
n

r∑
i=1

n∑
j=1

n∑
`=1

Zi ,jZi ,` = ZTZ.

Then we can assess the distance of T to χ2
r .
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ph = xf ′′(x) + 1
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Sketch of the argument

First note that E [T ] = r . As Zi ,j is independent of Zk,` for
` 6= j , k = 1, . . . , r , T is a sum of locally dependent summands. For
j , ` = 1, . . . , n, set

T j =
1
n

r∑
i=1

∑
s 6=j

∑
t 6=j

Zi ,sZi ,t .

Then T j is independent of Za,j for all a = 1, . . . , r .
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From Stein’s method,

E [g(T )]− E[g(χr )] = E
[
Tf ′′(T ) +

1
2

(r − T )f ′(T )

]
.

Taylor expansion gives

E
[
Tf ′(T )

]
=

1
n

r∑
i=1

n∑
j=1

n∑
`=1

E
[
Zi ,jZi ,`{f ′(T j) + (T − T j)f ′′(T j)}

]
+ R1

= rE
[
f ′(T )

]
+

1
n

r∑
i=1

n∑
j=1

n∑
`=1

E
[
Zi ,jZi ,`(T − T j)f ′′(T j)

]
+ R1 + R2,

with R1 and R2 explicit remainder terms.
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Now,

T − T j =
1
n

r∑
k=1

Zk,j

Zk,j + 2
∑
s 6=j

Zk,s


and so

E
[
Zi ,jZi ,`(T − T j)f ′′(T j)

]
=

1
n

r∑
k=1

E
[
Zi ,jZi ,`Z

2
k,j f
′′(T j)

]
+

2
n

r∑
k=1

∑
s 6=j

E
[
Zi ,jZi ,`Zk,jZk,s f

′′(T j)
]
.
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For 1
n

∑r
k=1 E

[
Zi ,jZi ,`Z

2
k,j f
′′(T j)

]
,

E
[
Zi ,jZi ,`Z

2
k,j

]
= 0 unless ` = j or i = k

and for 2
n

∑r
k=1

∑
s 6=j E

[
Zi ,jZi ,`Zk,jZk,s f

′′(T j)
]
,

E
[
Zi ,jZi ,`Zk,jZk,s f

′′(T j)
]
≈ 1(i = k)E

[
Zi ,`Zi ,s f

′′(T j)
]

≈ 1(i = k)E
[
Zi ,`Zi ,s f

′′(T )
]
.

These approximations can be quantified.

June 24, 2019 Stein’s method 29



Stein’s method

Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

A chisquare approximation for quadratic forms

The proof generalises to quadratic forms. Let
Zi ,j , i = 1, . . . , r , j = 1, . . . , n be mean zero random variables such
that Zi ,j is independent of {Zk,`, k = 1, . . . , r , ` 6= j} and Zi ,j has
the same distribution as Zi ,`, for i = 1, . . . , r . Assume that

β(I ) = E

(∏
i∈I

Zi ,1

)
,

for I a multiset of indices in {1, . . . , r}, exists for |I | ≤ 8. Let

Zi =
1√
n

n∑
j=1

Zi ,j ; i = 1, . . . , r , and Z = (Z1, . . . ,Zr )T .
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Let τi ,k = Cov(Zi ,1,Zk,1) and assume that the r × r matrix
τ = (τi ,k)i ,k=1,...r is invertible. Let U = τ−1 and let T = ZTUZ.

Theorem

For all functions g ∈ C 3
b (R),

|E [g(T ))]− E [g(χr )]| 6 16|||g |||3
r
√
n

R(r)

with R an explicit remainder term.

For fixed r the overall bound is of order n−
1
2 .

If E(W k) is of order rk for k = 2, 3, 4, then the overall bound tends
to 0 as n→∞ if r = o(n

3
8 ).

June 24, 2019 Stein’s method 31



Stein’s method

Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Application: log likelihood ratio statistics

Let X = (X1, . . . ,Xn) be independent and identically distributed
(i.i.d.) observations from a distribution with probability density
function f (x |θ), where θ = (θ1, . . . , θd)T ∈ Θ ⊂ Rd . The test
problem is

H0 : θ0,j = 0, j = 1, . . . , r

against the general alternative H1 : θ ∈ Θ. Assume that
dim(Θ) = d ; then Θ0 = {θ ∈ Θ : θ0,j = 0 for j = 1, . . . , r} has
dimension d − r . Writing θ =

(
θ[1:r ],θ[r+1:d ]

)T where θ[1:r ] is the
vector of the first r components of θ and θ[r+1:d ] is the vector of
the remaining d − r components of θ, the null hypothesis translates
to H0 : θ0,[1:r ] = 0.
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Let L(θ; x) =
∏n

i=1 f (xi |θ) denote the likelihood function which is
assumed to be regular, so that the maximum likelihood estimate
exists and is unique, and having derivatives of up to third order
with respect to θ. Set

θ̂res(x) = argmaxθ∈Θ0
L(θ; x) =

(
0[1:r ], θ̂

∗
[r+1:d ](x)

)T
=
(
0[1:r ], θ̂

∗(x)
)T

θ̂n(x) = argmaxθ∈ΘL(θ; x).

The log-likelihood ratio statistic is

−2 log Λ = 2 log

(
T1

T2

)
with T1 =

L(θ̂n(x); x)

L(θ0; x)
and T2 =

L(θ̂res(x); x)

L(θ0; x)

with θ0 the unknown true parameter.
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Notation

The Fisher information matrix for one random vector is denoted by

I (θ0) =

(
A B
BT C

)
.

The score function for θ0 is

S(θ0) = S(θ0, x) = ∇ log L(θ0; x) =
√
n

(
ξ(θ0, x)
η(θ0, x)

)
with column vectors ξ ∈ Rr and η ∈ Rd−r . Under regularity,

E[S(θ0)S(θ0)T ] = nI (θ0).
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We write
`(θ; x) = log(L(θ; x)) =

∑n
i=1 log(f (xi |θ)) =

∑n
i=1 `xi(θ).

Let Yj = ∇`Xj(θ) = (Yi ,j , j = 1, . . . , d) so that

Yi ,j =
∂

∂θi
log(f (Xj |θ)).

Key: Yj , j = 1, . . . , n are i.i.d. vectors of possibly dependent
entries. Under regularity, for every fixed i the sum

∑n
j=1 Yi ,j

satisfies a LLN as well as a CLT.
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Heuristics for Wilks’ Theorem
As ∂

∂θi
`
(
θ̂n(x); x

)
= 0, for i = 1, 2, . . . , d , by Taylor expansion

2 logT1 ≈ n
(
θ̂n(x)− θ0

)T
I (θ0)

(
θ̂n(x)− θ0

)
.

By Taylor expansion,

S(θ0) =
√
n

(
ξ(θ0, x)
η(θ0, x)

)
≈ nI (θ0)(θ̂n(x)− θ0).

Re-arranging,

2 logT1 ≈
(

ξ
η

)T

[I (θ0)]−1
(

ξ
η

)
.

June 24, 2019 Stein’s method 36



Stein’s method

Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

Similarly we obtain an expression for 2 logT2. As ξ = 0 under H0,
only the lower right corner C of I (θ0) enters, so that

2 logT2 ≈ ηTC−1η.

For the likelihood ratio statistic, thus under H0,

−2 log Λ ≈
(

ξ
η

)T

[I (θ0)]−1
(

ξ
η

)
− ηTC−1η = ZT τ−1Z

with τ = A− BC−1BT and

Zi ,j =
∂

∂θi
log(f (Xj |θ0))−

d−r∑
k=1

(BC−1)i ,k
∂

∂θk+d
log(f (Xj |θ0)).
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Now
−2 log Λ ≈ ZT τ−1Z

and the chisquare approximation theorem for quadratic forms can
be applied.

Theorem

Let X1,X2, . . . ,Xn be i.i.d. Rt-valued, t ∈ Z+, random vectors
with pdf (or pmf) f (x1|θ), for which Θ is an open subset of Rd .
Assume regularity on f and let h ∈ C3

b(R). Then

∣∣E [h (−2 log Λ)]− E[h(χ2
r )]
∣∣ 6 16|||h|||3

r
√
n

R(r) +
1√
n
‖h′‖S(θ0),

where R(r) is given in the chisquare approximation for quadratic
forms and S(θ0) relates to the approximation of the mle by θ0.
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Remarks

The bounds on the remainder terms use ideas from the bounds on
distance to normal for maximum likelihood estimators, see A.
Anastasiou (2018), Anastasiou + R. (2017), but without using a
normal approximation.

For fixed d , the upper bound is O
(
n−1/2).

The overall order of the bound is of order d23/2n−1/2 when both r
and d are not fixed. and the chi-square approximation is justified
when d = o(n1/23).

The proof involves repeated applications of the Cauchy-Schwarz
inequality, and hence we do not expect this bound to be tight.
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Example: logistic regression

Assume (Xi ,Yi ), i = 1, . . . , n, are i.i.d. observations where
Xi ∈ Rd and Yi ∈ {0, 1}, related through the model

Pθ(Yi = 1|Xi = x) =
(
1 + e−θ

T x
)−1

for θ ∈ Rd .

Test H0 : θ0 = 0 against the general alternative: Sur, Chen and
Candés (2017) show that when d grows linearly with n, the
chisquare approximation is no longer valid.

Portnoy (1988) showed that the chi-square asymptotic is still valid
when d = o

(
n

2
3

)
. Our criterion d = o

(
n

1
23

)
is not as strong, but

our bound is explicit and derived in a more general setting.
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Related work

For quadratic forms of i.i.d. variables: Götze and Tikhomirov
(2005): O( 1

n ) in Kolmogorov distance.
For Pearson’s statistic: Mann (1998) uses Götze’s (1993) bound on
the multidimensional CLT to obtain an explicit explicit O

(
1√
n

)
bound in Kolmogorov distance.
Götze and Ulyanov (2003): a non-explicit O( 1

n ) bound when r ≥ 5.

For power divergence statistics: For r > 4, Ulyanov and Zubov
(2009): O(n(r−1)/r ) in Kolmogorov distance and, for r = 3,
Assylbekov, Ulyanov and Zubov (2011): O(n−3/4+0.065) in
Kolmogorov distance. They used number theory and differential
geometry.
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Chi-square approximations via Stein-Malliavin calculus:

Universality for homogeneous sums: Nourdin, Peccati, R. (2010)

Malliavin calculus for second Wiener chaos: Nourdin and Poly
(2012)

Invariance principle for sequences of stochastic integrals in the
second Wiener chaos: Azmoodeh, Peccati and Poly (2014)

Stein characterisation for centered random variables living in a finite
sum of Wiener chaoses: Arras, Azmoodeh, Poly and Swan (2016)
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Stein 1972: “I regret that, in order to
complete this paper in time for publica-
tion, I have been forced to submit it with
many defects remaining.”

June 24, 2019 Stein’s method 43



Stein’s method

Three proofs of a simple fact, using h(x) − χ2
ph = xf ′′(x) + 1

2 (p − x)f ′(x)

References

Anastasiou, A., & Reinert, G. (2018). Bounds for the asymptotic
distribution of the likelihood ratio. arXiv preprint arXiv:1806.03666.

Gaunt, R. E., Pickett, A. M., & Reinert, G. (2017). Chi-square
approximation by Stein’s method with application to Pearson’s
statistic. The Annals of Applied Probability, 27(2), 720-756.

Gaunt, R. E., & Reinert, G. The rate of convergence of some
asymptotically chi-square distributed statistics by Stein’s
method.arxiv.org/abs/1603.01889

June 24, 2019 Stein’s method 44

arxiv.org/abs/1603.01889

	Chi-Square Statistics
	Stein's method and h(x) - 2p h = xf''(x) + 12(p-x)f'(x)
	Three proofs of a simple fact, using  h(x) - 2p h = xf''(x) + 12(p-x)f'(x)

