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@ The random portion of vertices with degree k converges with p = £ to
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so that high degrees are not very likely.

@ But in real world networks we see a huge variety of different degrees:
the power law degree sequence
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Dynamic Random Networks

@ Dynamic random network like the www, social or biological networks
o Erdés-Renyi-Graph
n vertices, independently for each edge: Ber(p).
@ The random portion of vertices with degree k converges with p = % to
k
A

1 ]]_ n—oo A
n; {deg,(N=k} — 7 Pk=¢€ "7

so that high degrees are not very likely.

@ But in real world networks we see a huge variety of different degrees:
the power law degree sequence

= Z Lideg, (=K} — "% bk ~ k7 for some T scale-free network

— BARABASI AND ALBERT (1999) proposed a different dynamic model
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@ structure:
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Preferential Attachment Model

@ structure:
e in each time step add one new vertex
o this vertex links to every older vertex with probability depending on a
function f of the indegree of the older vertex
@ Erdos-Renyi: independently with (k) = 1.
o preferential attachment: Nodes with high degree are more likely to be
linked again than others

The indegree distribution of a uniformly chosen vertex converges to a
limiting distribution

P(deg™ (Un) = k) "= juc =

Fluctuations in a general PA model 25 June 2019 3/25



Preferential Attachment Model

@ structure:
e in each time step add one new vertex
o this vertex links to every older vertex with probability depending on a
function f of the indegree of the older vertex
@ Erdos-Renyi: independently with (k) = 1.
o preferential attachment: Nodes with high degree are more likely to be
linked again than others

The indegree distribution of a uniformly chosen vertex converges to a
limiting distribution

P(deg™(Un) = k) = i =

satisfying a power law for f(k) = vk + 3, 7,8 € [0,1)
or a stretched exponential for f(k) = vk* « € (0,1),7 >0
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Preferential Attachment Model

e Start with G; being one vertex with no edges [or dy self-edges].
In each step we add one vertex.
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Preferential Attachment Model

e Start with G; being one vertex with no edges [or dy self-edges].
In each step we add one vertex.

@ G, consists of n vertices, no loops, no multiple edges
The new vertex connects to each of the former vertices j by at most

one edge with probability

F(deo—(i
P(n+ 1 connects to j | G,) = (ngn”(J)),

where deg,, (j) is the indegree of vertex j at time n
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Preferential Attachment Model

e Start with G; being one vertex with no edges [or dy self-edges].
In each step we add one vertex.
@ G, consists of n vertices, no loops, no multiple edges
The new vertex connects to each of the former vertices j by at most
one edge with probability
f(deg, (/)

P(n+ 1 connects to j | G,) = ———",
n

where deg,, (j) is the indegree of vertex j at time n and
f : No — (0, 00) is monotonically increasing such that f(n) < n—+ 1.
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Preferential Attachment Model: Examples

o fixed outdegree — exactly one edge each step:
do = 1, add one vertex and set f(k) = ﬁéf&‘; for a fixed parameter
0> —1.
close to BOLLOBAS, RIORDAN, SPENCER AND TUSNADY (2001);
HorsTAD (2017)
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Preferential Attachment Model: Examples

o fixed outdegree — exactly one edge each step:
do = 1, add one vertex and set f(k) = ﬁéf&‘; for a fixed parameter
0> —1.
close to BOLLOBAS, RIORDAN, SPENCER AND TUSNADY (2001);
HorsTAD (2017)

@ random outdegree:

do =0, n+ 1 has an edge with j < n+ 1 independently with prob.
f(deg, (j))

n
DEREICH AND MORTERS (2009, 2013)
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Preferential Attachment Model: Examples

o fixed outdegree — exactly one edge each step:
do = 1, add one vertex and set f(k) = ﬁéf&‘; for a fixed parameter
0> —1.
close to BOLLOBAS, RIORDAN, SPENCER AND TUSNADY (2001);
HorsTAD (2017)

@ random outdegree:
do =0, n+ 1 has an edge with j < n+ 1 independently with prob.
f(deg, (j))
n
DEREICH AND MORTERS (2009, 2013)

@ spatial attachment:
on a hypercube; add an edge with probability p if it lies in the sphere
of influence of an older vertex which itself depends on the degree
AIELLO, BONATO, COOPER, JANSSEN AND PRALAT (2008)
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Theorem 1 (Betken, D., Ortgiese, 2019)

Let W, denote the indegree of a uniformly chosen vertex at time nin a
preferential attachment model satisfying our assumptions.

Suppose further that there exists k. € Ny such that (k) > k for all

k < ki and f(k) < k for all k > k..
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Theorem 1 (Betken, D., Ortgiese, 2019)

Let W, denote the indegree of a uniformly chosen vertex at time nin a
preferential attachment model satisfying our assumptions.
Suppose further that there exists k. € Ny such that (k) > k for all

k < ki and f(k) < k for all k > k,.
satisfied e.g. for all sublinear models such that ml?x(f(k +1)— f(k)) <1,

see DEREICH, MORTERS (2013)
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Theorem 1 (Betken, D., Ortgiese, 2019)

Let W, denote the indegree of a uniformly chosen vertex at time nin a
preferential attachment model satisfying our assumptions.

Suppose further that there exists k. € Ny such that (k) > k for all

k < ki and f(k) < k for all k > k..

Then, there exists a constant C > 0 such that for all n > 2

drv (W, W) < C '°g,f”),

k—1
£(i
where W ~ = (ug)k = (1+11f(k) il:lo 1+(f()i))k'
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Theorem 2 (Betken, D., Ortgiese, 2019)

Let W, denote the indegree of a uniformly chosen vertex at time n in a
preferential attachment model satisfying our assumptions.
Suppose further that f(k) € [k, k + 7] for all k € Ny and some v € (0,1).
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Theorem 2 (Betken, D., Ortgiese, 2019)

Let W, denote the indegree of a uniformly chosen vertex at time n in a
preferential attachment model satisfying our assumptions.

Suppose further that f(k) € [k, k + 7] for all k € Ny and some v € (0,1).
e.g. f(k) = k +~: the distribution has power law exponent 2 and no finite

mean: weaker convergence
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Theorem 2 (Betken, D., Ortgiese, 2019)

Let W, denote the indegree of a uniformly chosen vertex at time n in a
preferential attachment model satisfying our assumptions.
Suppose further that f(k) € [k, k + 7] for all k € Ny and some v € (0,1).

Then, there exists a constant C > 0 such that for all n > 2

dTV(Wn7 W) < C

nt=7’

k—1
£(i
where W ~ = (ug)k = (1+11f(k) il:lo 1+(f()i))k'
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Preferential Attachment Model: Known Rates

@ random outdegree convergence with rates via coupling, best rates
log(n)

FORD (2009)
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@ random outdegree convergence with rates via coupling, best rates
log(n)

n
ForD (2009)
o fixed outdegree total variation of the indegree of a random vertex and

the geometric distribution, rate %
PEKOZ, ROLLIN AND RoOss (2013)
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@ random outdegree convergence with rates via coupling, best rates
log(n)
n
ForD (2009)
o fixed outdegree total variation of the indegree of a random vertex and
the geometric distribution, rate %
PEKOZ, ROLLIN AND RoOss (2013)

e random outdegree, linear attachment f(k) ~ k + 0 total variation of
the indegree of a random vertex and the mixed negative binomial
et on-: log(n)
distribution: rate =~
Ross (2013)
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log(n)
n
ForD (2009)
o fixed outdegree total variation of the indegree of a random vertex and
the geometric distribution, rate %
PEKOZ, ROLLIN AND RoOss (2013)

e random outdegree, linear attachment f(k) ~ k + 0 total variation of
the indegree of a random vertex and the mixed negative binomial
et on-: log(n)
distribution: rate =~
Ross (2013)

o fixed outdegree, multiple edges allowed joint degree distribution,
convergence in the p-norm
PEKOZ, ROLLIN AND RoOss (2017)
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Preferential Attachment Model: Known Rates

@ random outdegree convergence with rates via coupling, best rates
log(n)
n
ForDp (2009) v/
o fixed outdegree total variation of the indegree of a random vertex and
the geometric distribution, rate %
PEKOZ, ROLLIN AND RoOss (2013)

e random outdegree, linear attachment f(k) ~ k + 0 total variation of

the indegree of a random vertex and the mixed negative binomial
et on-: log(n)

distribution: rate =~
Ross (2013) v

o fixed outdegree, multiple edges allowed joint degree distribution,
convergence in the p-norm
PEKOZ, ROLLIN AND RoOss (2017)

Fluctuations in a general PA model 25 June 2019 9/25



Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

. e 1 Tof0)
P(W, = k) = P(deg™(U,) = k) = juc = 1+ f(k) 11 14 £(i)
i=0
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Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

k—1
P(W, = k) = P(deg™ (Un) = k) =3 11 = 1T ,c H

@ Let N; start in 0 and jump from 7 to i + 1 with rate f( /).
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Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

k—1
P(W, = k) = P(deg™ (Un) = k) =3 11 = 1+ f H
i=0

o Let NV, start in 0 and jump from i to i + 1 with rate f(l)

Let Y ~ Exp(1) and E; ~ Exp(f(i)) as well as Sy := Z E;.
i=0
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Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

k—1
P(W, = k) = P(deg™ (Un) = k) =3 11 = 1+ f H
i=0

o Let NV, start in 0 and jump from i to i + 1 with rate f(l)

Let Y ~ Exp(1) and E; ~ Exp(f(i)) as well as Sy := Z E;.
i=0

P(Ny > k) =P(Y > S)
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Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

k—1
n—oo

P(W, = k) =P(deg™ (Up) = k) = jix =

I:I

1—|—f ’:0

o Let NV, start in 0 and jump from i to i + 1 with rate f(l)

Let Y ~ Exp(1) and E; ~ Exp(f(i)) as well as Sy := Z E;.
i=0

P(Ny > k) =P(Y > Sk) = E[E[L{y>s,}|Sk]] = E[e ]
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Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

k—1
n—oo

P(W, = k) =P(deg™ (Up) = k) = jix =

I:I

1—|—f ’:0

o Let NV, start in 0 and jump from i to i + 1 with rate f(l)

Let Y ~ Exp(1) and E; ~ Exp(f(i)) as well as Sy := Z E;.
i=0

P(Ny > k) =P(Y > Sk) = E[E[L{y>s,}|Sk]] = E[e ]
k—1 k—1

_ B _ F(7)
- 11Ele E}_ng(i)
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Stein Operator for PA

e DEREICH, MORTERS (2009): limiting distribution 1

k—1
n—oo

P(W, = k) =P(deg™ (Up) = k) = jix =

I:I

1—|—f ’:0

o Let NV, start in 0 and jump from i to i + 1 with rate f(l)

Let Y ~ Exp(1) and E; ~ Exp(f(i)) as well as Sy := Z E;.
i=0

=
=
-<
%
o>
I
=
~<
Y%
[¥))

= E[E[l{y>s,3/5¢]] = E[e™*]
k—1 k—1

_ B _ F(7)
- 11Ele E}_ng(i)

i=0
)y fG)
P(Ny—k)_g ) _gl+f(/) Hi
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Stein Operator for PA

o forall g:Ng - R

sle(v)] = [ Elg(.)]eas
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Stein Operator for PA

o forall g:Ng - R

Bla(v)] = | Ela(m))e e

=g(0) + /OOOE{f(Ns) (g(Ns +1) — g(Ns))]e*Sds
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Stein Operator for PA

o forall g:Ng - R

sle(v)] = [ Elg(.)]eas
:g(o)+/0°oE[f(N)( (N +1) — (Ns))] eSds
:g(0)+E[f(Ny)<g(Ny+ 1) — g(Ny )]
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Stein Operator for PA

o forall g:Ng - R

Ble(W)] = [ Ele(N)]eds
:g(0)+/0°oE[f(N)( (No+1) — g(Ns) ) [ e~<ds
= £(0) +E[F(Ny) (g(Ny +1) —g(Ny) )]
o Stein operator: Choose

Ag(k) :=f(k)(g(k +1) — g(k)) + &(0) — g(k)
=f(k)Ag(k) +g(0) — g(k)

for Ag(k) = g(k +1) — g(k).
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Stein Equation for PA

With

Ag(k) = f(k)Ag(k) + g(0) — g(k)
and B

= () = (1+f 1:[ )
we have

Wep o E[AgW)]=0
for all g : Ng — R such that E[g(W)] < occ.
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Solution to Stein's Equation for PA

@ Let (Z;) denote a Markov chain with generator A
solution of Aga = h — pu(h) for any h = 14, with A C Ny is given by

ealk) == [ (Buh(z) — [ hd)at
if it exists.

BARBOUR (1988), GOTZE (1991)
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@ Let (Z;) denote a Markov chain with generator A
solution of Aga = h — pu(h) for any h = 14, with A C Ny is given by

ealk) == [ (Buh(z) — [ hd)at
if it exists.

BARBOUR (1988), GOTZE (1991)

@ here: The solution can be checked using Kolmogorov's backward
equation for Markov chains and a small coupling argument
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Solution to Stein's Equation for PA

@ Let (Z;) denote a Markov chain with generator A
solution of Aga = h — pu(h) for any h = 14, with A C Ny is given by

ealk) == [ (Buh(z) — [ hd)at
if it exists.

BARBOUR (1988), GOTZE (1991)

@ here: The solution can be checked using Kolmogorov's backward
equation for Markov chains and a small coupling argument

@ smoothness estimate:
f(k)Ag(k) <1 forall k € Ny

following techniques in BRowN, X1a (2001)
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Bounding the Stein Operator

e dynamic way of generating a uniform random variable on {1,..., n}
cf. FOrRD (2009)
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Bounding the Stein Operator

e dynamic way of generating a uniform random variable on {1,..., n}
cf. FOrRD (2009)

@ Let J, be a Markov chain with J; = 1 and such that

n 1
P and P(Jpy1=n+1|Jp) = ——.

P(Jnt1 = Jn|Jn) = 1
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Bounding the Stein Operator

e dynamic way of generating a uniform random variable on {1,..., n}
cf. FOrRD (2009)

@ Let J, be a Markov chain with J; = 1 and such that

n 1
P and P(Jpy1=n+1|Jp) =

P(Jp1 = Jn| Jn) = —

e Forany n, J, ~ U({1,...,n})
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Bounding the Stein Operator

e dynamic way of generating a uniform random variable on {1,..., n}
cf. FOrRD (2009)

@ Let J, be a Markov chain with J; = 1 and such that

n 1
P and P(Jpy1=n+1|Jp) =

P(Jp1 = Jn| Jn) = —

e Forany n, J, ~ U({1,...,n})

W, := deg™ (U,) 4 X, :=deg™ (Jn)
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Bounding the Stein Operator

e dynamic way of generating a uniform random variable on {1,..., n}
cf. FOrRD (2009)

@ Let J, be a Markov chain with J; = 1 and such that
n n-+ —_—.
n+1 n n n 1 n+1 n n 1

For any n, J, ~ U({1,...,n})

W, := deg™ (U,) 4 X, = deg™ (Jn)
e (X,) is a time-inhomogeneous, discrete Markov chain, with generator

;
(k) 1
n+1
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Bounding the Stein Operator

o W, <X, = deg™ (Jn)

@ transition probabilities given for any i > 1 as

M =i

P(Xnt1 =j[Xn =1i) =
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Ao ifj=o0,
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Bounding the Stein Operator

o W, <X, = deg™ (Jn)
@ transition probabilities given for any i > 1 as
M) =i+,

n
P(Xn+1 =J ‘ Xn = i) = n;_i(li) if j=1i,
4 ifj=0,

25 June 2019
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Bounding the Stein Operator

o W, <X, = deg™ (Jn)
@ transition probabilities given for any i > 1 as

P(Xpi1 = j| Xo =) =4 =0 g j—
1 e
m |f_] = 0,
and
(0 o
ns_% if j=1,

P(Xps1=j| X, =0) =

25 June 2019
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Bounding the Stein Operator

o W, <X, = deg™ (Jn)

@ transition probabilities given for any i > 1 as

(i) .
. ifj=i+1,
P(Xnp1 = Xa =)= 2=fD ¢ =
1 if j =0,

and

F(0) if j =1,
]P)(Xn+1 :./ ‘ Xn = O) = f(O) .
1-— if j=0.
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Bounding the Stein Operator

@ aim: Bound

|E[Aga(Wii1)]| = [EAga(Xn+1)]
= |E[f(Xnr1)Aga(Xnt1) + ga(0) — ga(Xnr1)]|

Fluctuations in a general PA model 25 June 2019 16 /25



Bounding the Stein Operator

@ aim: Bound

|E[Aga(Wii1)]| = [EAga(Xn+1)]
= |E[f(Xnr1)Aga(Xnt1) + ga(0) — ga(Xnr1)]|
= |E[va(Xnt1) + 8a(0) — ga(Xnt+1)]|  for va(Xn) = f(Xn)Aga(Xn).
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Bounding the Stein Operator

@ aim: Bound

[E[Aga(Wht1)]| = [EAga(Xn+1)]|
= |E[f(Xnr1)Aga(Xnt1) + ga(0) — ga(Xnr1)]|
= |E[va(Xnt1) + 8a(0) — ga(Xnt+1)]|  for va(Xn) = f(Xn)Aga(Xn).
o Let h: Ny — R be such that h(0) = 0, then
E [h(Xnt1)] = E[E [h(Xn+1) [ Xa]]
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Bounding the Stein Operator

@ aim: Bound

[E[Aga(Wht1)]| = [EAga(Xn+1)]|
= |E[f(Xnr1)Aga(Xnt1) + ga(0) — ga(Xnr1)]|
= |E[va(Xnt1) + 8a(0) — ga(Xnt+1)]|  for va(Xn) = f(Xn)Aga(Xn).
o Let h: Ny — R be such that h(0) = 0, then
E [h(Xnt1)] = E[E [h(Xn+1) [ Xa]]

:E[h(X,,)n_nf(X”)

f(Xn)
5 +h(xn+1)n+1}
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Bounding the Stein Operator

@ aim: Bound

[E[Aga(Wht1)]| = [EAga(Xn+1)]|
= |E[f(Xnr1)Aga(Xnt1) + ga(0) — ga(Xnr1)]|
= |E[va(Xnt1) + 8a(0) — ga(Xnt+1)]|  for va(Xn) = f(Xn)Aga(Xn).
o Let h: Ny — R be such that h(0) = 0, then
E [h(Xnt1)] = E[E [h(Xn+1) [ Xa]]

:E[h(X,,)'Pnf(X”)

f(Xn)
1) b))

n 1
= o Bl + = EIF(Xa) AR(Xa)].

[y
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Bounding the Stein Operator

@ aim: Bound

[E[Aga(Wht1)]| = [EAga(Xn+1)]|
= |E[f(Xnr1)Aga(Xnt1) + ga(0) — ga(Xnr1)]|
= |E[va(Xnt1) + 8a(0) — ga(Xnt+1)]|  for va(Xn) = f(Xn)Aga(Xn).
o Let h: Ny — R be such that h(0) = 0, then
E [h(Xnt1)] = E[E [h(Xn+1) [ Xa]]

:E[h(X,,)'Pnf(X”)

f(Xn)
1) b))

n 1
= o Bl + = EIF(Xa) AR(Xa)].

[y

@ iteration and X; = 0 yields

1
n+1

> E[F(X) Ah(X)].

(=1

E[h(Xn1)] =
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Bounding the Stein solution

S EIF(X)ARO)]
(=1

for h(k) = Aga(k) — va(0) = va(k) + ga(0) — ga(k) — va(0):

o E[h(Xp11)] =
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Bounding the Stein solution

o E[h(Xn11)] = ZE[f Xo)Ah(X0)]
for h(k) = AgA( ) ~"V(0) = va(K) + £4(0) — ga(k) — va(0)
E[AgA( Xoi1)] = B (X1 1)] + va(0)

Z (EIF(X)Ava(X0)] ~ EIF(Xe)Aga(X0)]) + va(0)

n (-1
1
= F(K)Ava(K)P(X, = k)
n+1
/=1 k=0
n (-1
1 va(0)
— k) — P(X, = k .
1 20 2l — O = k) + 2T
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Bounding the Stein solution

@ For the second sum, we write

—1 -1 k—1
(va(k) = va(0))P(Xe = k) = > Y~ Ava()P(X; = k)
k=0 k=0 i=0
-1 -1 -1
=D Ava(i) > PXe=k) =D Ava(i)P(X; > i +1)
i=0 k=i+1 i=0
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Bounding the Stein solution

@ For the second sum, we write

/—1 -1 k-1
D (va(k) = va(0))P(Xp = k) = > Y~ Ava(i)P(X, = k)
k=0 k=0 i=0
l— /—1
- Z Ava(i) Z (Xy = k) Ava()P(Xp > i +1).
i=0 k=i+1 i=0

@ Therefore,

n 01
PHenro) :ni 1 f(k)Ava(k)P(Xe = k)
£=1 k=0
2P0 va(0)
- +1 — k:O(VA(k) - VA(O))P(X[ — k) + L
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Bounding the Stein solution

@ For the second sum, we write

/—1 -1 k-1
D (va(k) = va(0))P(Xp = k) = > Y~ Ava(i)P(X, = k)
k=0 k=0 i=0
l— /—1
- Z Ava(i) Z (Xy = k) Ava()P(Xp > i +1).
i=0 k=i+1 i=0

@ Therefore,

n (-1
E[Aga(Xni1)] = > (k) Ava(k)P(X; = k)
£=1 k=0
/—1
1
- Ava(kB(X; > k+ 1) + 20
n+1 {=1 k=0 n+1
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Bounding the Stein solution

@ Thus, we used the Markov structure to show

n (-1

E [Aga(Xns1)] = (Z > Ava(k)h(k, €) + vA(0)>
1 k=0

where

va(k) = f(k)Aga(k)
and h(k,0) := f(K)P(X, = k) — P(X; > k + 1).
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Bounding the Stein solution

@ Thus, we used the Markov structure to show

n (-1
E [Aga(Xns1)] = (Z > Ava(k)h(k, €) + vA(0)>
1 k=0
where
va(k) := F(k)Aga(k)
and h(k, ) == F(K)P(X; = k) — P(X; > k + 1).

o Note: h(k,¢) =0 for X ~ p

Fluctuations in a general PA model 25 June 2019 19/25



Bounding the Stein solution

@ Thus, we used the Markov structure to show

n (-1
E [Aga(Xn:1)] = (ZZAVA K)h(k,€) + va(0) ),
1 k=0
where
va(k) := f(k)Aga(k) smoothness estimate!
and h(k,0) = f(k)P(X, = k) —P(Xy > k + 1).

o Note: h(k,¢) =0 for X ~ p

Fluctuations in a general PA model 25 June 2019 19/25



Bounding the Stein solution

@ By discrete integration by parts formula and h(¢,¢) = 0:

-1 -1
> Ava(k)h(k,£) = —va(0)h(0,0) = > va(k + 1)Ah(k, 0).
k=0 k=0
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Bounding the Stein solution

@ By discrete integration by parts formula and h(¢,¢) = 0:

/—1
ZAVA h(k,€) = —va(0)h(0,0) = > " va(k + 1)Ach(k, ).
k=0

|E[Aga(Xn+1)]|
n /-1
< ’ﬂol)’ + ,,H Z (32 valk + 1)akh(k,0)) + vA(O)h(O,E)M

= k=0

2
< h(k,?).
~ n+1 Jrn—l— SUP|VA Z 5<le
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Bounding the Stein solution

And finally

dTV(Wna W) = sup ‘E[AgA n+1)”
ACNp

< sup h(k,?)
- n+1zk<ep1

C @ for slowly growing f
C for f(k) =k + .

_1
nl=7
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Theorem 3 (Betken, D., Ortgiese, 2019)

Let D, denote the outdegree of vertex n in a preferential attachment
model satisfying our assumptions.
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Theorem 3 (Betken, D., Ortgiese, 2019)

Let D, denote the outdegree of vertex n in a preferential attachment
model satisfying our assumptions.

@ Suppose f(k) < vk + 1 for v € (0,1). Then there exists C > 0 such

that
1

— = for 0 <y < 3
n+1° 27
dTV(Dm ’DO()‘N)) < C @7 for Y= %a

n=21-7 " for % <y <1,
where A\, = E [f(W,_1)] .
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Theorem 3 (Betken, D., Ortgiese, 2019)

Let D, denote the outdegree of vertex n in a preferential attachment
model satisfying our assumptions.

@ Suppose f(k) < vk + 1 for v € (0,1). Then there exists C > 0 such

that

1 1
gl f0r0<7<§,

drv(Dn, Po(An)) < C {8 oy = 1
n=21-7 " for % <y <1,
where A\, = E [f(W,_1)] .

e Known: \, — A = E[f(W)], where W ~ p.
DEREICH, MORTERS (2009)
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Theorem 3 (Betken, D., Ortgiese, 2019)

Let D, denote the outdegree of vertex n in a preferential attachment
model satisfying our assumptions.

@ Suppose f(k) < vk + 1 for v € (0,1). Then there exists C > 0 such
that
1

gl for 0 < Y < %,
drv(Dn, Po(An)) < C {8 oy = 1

n=21-7 " for % <y <1,
where A\, = E [f(W,_1)] .

e Known: \, — A = E[f(W)], where W ~ p.
DEREICH, MORTERS (2009)

o If f(k) =~k + 3 for v € (0,1),3 € [0,1], then

A= E[F(W)]| < n 7,

Fluctuations in a general PA model
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Proof of Theorem 3: Stein’s method

° Dp=Y""1 100
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Proof of Theorem 3: Stein’'s method
© Dp=3""1 gy
@ Defining

Pi,n ‘== ]P)(]l{n—ﬁ} = 1) = IE[]1{n—>i}]
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Proof of Theorem 3: Stein’s method

© Dp=3"1"1 Linsi)
@ Defining

Pi,n = ]P(]l{n—n} = 1) = E[ﬂ{n—w}]
— E [E [deg;, (i) — deg,_4(1)|Gn-1]]
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Proof of Theorem 3: Stein’s method

© Dy =07 1insiy
@ Defining
Pin = P(]l{n_ﬂ'} =1)= IE[ﬂ{n—ﬁ}]
— E[E [deg (1) — deg;_,(1)|Gn 1]

f(degy_, (1)
=E [_i] ’
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Proof of Theorem 3: Stein’s method

° Dp=Y""1 100

@ Defining
Pi,n = IED(]l{n—>i} =1)= IE[]1{n—>i}]
= E [E [deg, (/) — deg,,_1(1)|Gn-1]]
E [f(deg;l(i))] |
n—1
we have

n—1
Ap = E[D)] = E [ﬁ S F(degy 4(1)] = E[F(Wo1)].
i=1
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Proof of Theorem 3: Stein’s method

@ Stein's equation

E[Ag(Z + 1) — Zg(Z)] = 0 for all bounded g:N — R < Z ~ Po()\)
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Proof of Theorem 3: Stein’s method

@ Stein's equation
E[Ag(Z + 1) — Zg(Z)] = 0 for all bounded g:N — R < Z ~ Po()\)

o BARBOUR, HALL (1984):

n—1

d1v(Dn, Po(An)) Zp,%n < mm{1 Ai} > P

i=1
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Proof of Theorem 3: Stein’s method

@ Stein's equation
E[Ag(Z + 1) — Zg(Z)] = 0 for all bounded g:N — R < Z ~ Po()\)

o BARBOUR, HALL (1984):

n—1

d1v(Dn, Po(An)) Zp,%n < mm{1 Ai} > P

i=1
@ here:

n—1

1 n\ 2y
Zp?,n=,, QZE[fdegn (P < (_1)2;(,),

(¥): see DEREICH, MORTERS (2013).
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Dynamic Random Networks

@ joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch
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Dynamic Random Networks
@ joint projekt with Stephan Bussmann, Matthias Reitzner and from

computer science Nils Aschenbruch
@ telecommunication network
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Dynamic Random Networks

@ joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch

@ telecommunication network

@ Poisson nb. of people with a cell phone
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Dynamic Random Networks

@ joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch
@ telecommunication network
@ Poisson nb. of people with a cell phone
@ with a communication zone depending on the Carcasonne grid
- - e
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Dynamic Random Networks

@ joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch
@ telecommunication network

@ Poisson nb. of people with a cell phone
@ with a communication zone depending on the Carcasonne grid

7" j

e Hua, LAST, SCHULTE (2016):
CLT for geometric functionals of Boolean models
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Dynamic Random Networks

@ joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch
telecommunication network

Poisson nb. of people with a cell phone
with a communication zone depending o

n the Carcasonne grid
27 i@

e Hua, LAST, SCHULTE (2016):

CLT for geometric functionals of Boolean models

generalize for compact sets depending on the Carcasonne grid — and
for moving participants!
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Dynamic Random Networks

@ joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch
telecommunication network

Poisson nb. of people with a cell phone
with a communication zone depending o

n the Carcasonne grid
27 i@

e Hua, LAST, SCHULTE (2016):

CLT for geometric functionals of Boolean models

generalize for compact sets depending on the Carcasonne grid — and
for moving participants!

@ Thank you!
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