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Dynamic Random Networks

Dynamic random network like the www, social or biological networks

Erdös-Renyi-Graph
n vertices, independently for each edge: Ber(p).
The random portion of vertices with degree k converges with p = λ

n to

1
n

n∑
i=1

1{degn(i)=k}
n→∞−→ pk = e−λλ

k

k!

so that high degrees are not very likely.
But in real world networks we see a huge variety of different degrees:
the power law degree sequence

1
n

n∑
i=1

1{degn(i)=k}
n→∞−→ pk ∼ k−τ for some τ scale-free network

→ Barabási and Albert (1999) proposed a different dynamic model
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Preferential Attachment Model
structure:

in each time step add one new vertex
this vertex links to every older vertex with probability depending on a
function f of the indegree of the older vertex

Erdös-Renyi: independently with f (k) = 1.
preferential attachment: Nodes with high degree are more likely to be
linked again than others

The indegree distribution of a uniformly chosen vertex converges to a
limiting distribution

P
(
deg−(Un) = k

) n→∞−→ µk = 1
1 + f (k)

k−1∏
i=0

f (i)
1 + f (i) , k ∈ N0

satisfying a power law for f (k) = γk + β, γ, β ∈ [0, 1)
or a stretched exponential for f (k) = γkα, α ∈ (0, 1), γ > 0
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Preferential Attachment Model

Start with G1 being one vertex with no edges [or d0 self-edges].
In each step we add one vertex.

Gn consists of n vertices, no loops, no multiple edges
The new vertex connects to each of the former vertices j by at most
one edge with probability

P(n + 1 connects to j | Gn) = f (deg−n (j))
n ,

where deg−n (j) is the indegree of vertex j at time n

and
f : N0 → (0,∞) is monotonically increasing such that f (n) ≤ n + 1.
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Preferential Attachment Model: Examples

fixed outdegree – exactly one edge each step:
d0 = 1, add one vertex and set f (k) = k+1+δ

n(2+δ) for a fixed parameter
δ > −1.
close to Bollobás, Riordan, Spencer and Tusnády (2001);
Hofstad (2017)

random outdegree:
d0 = 0, n + 1 has an edge with j < n + 1 independently with prob.
f (deg−

n (j))
n

Dereich and Mörters (2009, 2013)
spatial attachment:
on a hypercube; add an edge with probability p if it lies in the sphere
of influence of an older vertex which itself depends on the degree
Aiello, Bonato, Cooper, Janssen and Prałat (2008)
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Theorem 1 (Betken, D., Ortgiese, 2019)

Let Wn denote the indegree of a uniformly chosen vertex at time n in a
preferential attachment model satisfying our assumptions.
Suppose further that there exists k∗ ∈ N0 such that f (k) > k for all
k < k∗ and f (k) ≤ k for all k ≥ k∗.

satisfied e.g. for all sublinear models such that max
k

(
f (k + 1)− f (k)

)
< 1,

see Dereich, Mörters (2013)
Then, there exists a constant C > 0 such that for all n ≥ 2

dTV(Wn,W ) ≤ C log(n)
n ,

where W ∼ µ = (µk)k =
( 1

1+f (k)

k−1∏
i=0

f (i)
1+f (i)

)
k .
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Theorem 2 (Betken, D., Ortgiese, 2019)

Let Wn denote the indegree of a uniformly chosen vertex at time n in a
preferential attachment model satisfying our assumptions.
Suppose further that f (k) ∈ [k, k + γ] for all k ∈ N0 and some γ ∈ (0, 1).

e.g. f (k) = k + γ: the distribution has power law exponent 2 and no finite
mean: weaker convergence
Then, there exists a constant C > 0 such that for all n ≥ 2

dTV(Wn,W ) ≤ C 1
n1−γ ,

where W ∼ µ = (µk)k =
( 1

1+f (k)

k−1∏
i=0

f (i)
1+f (i)

)
k .
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Preferential Attachment Model: Known Rates

random outdegree convergence with rates via coupling, best rates
log(n)

n
Ford (2009)

X

fixed outdegree total variation of the indegree of a random vertex and
the geometric distribution, rate 1

n
Peköz, Röllin and Ross (2013)
random outdegree, linear attachment f (k) ∼ k + δ total variation of
the indegree of a random vertex and the mixed negative binomial
distribution: rate log(n)

n
Ross (2013)

X

fixed outdegree, multiple edges allowed joint degree distribution,
convergence in the p-norm
Peköz, Röllin and Ross (2017)
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Stein Operator for PA

Dereich, Mörters (2009): limiting distribution µ

P(Wn = k) = P
(
deg−(Un) = k

) n→∞−→ µk = 1
1 + f (k)

k−1∏
i=0

f (i)
1 + f (i)

Let Nt start in 0 and jump from i to i + 1 with rate f (i).

Let Y ∼ Exp(1) and Ei ∼ Exp
(
f (i)

)
as well as Sk :=

k−1∑
i=0

Ei .

P(NY ≥ k) = P(Y ≥ Sk) = E
[
E[1{Y≥Sk}|Sk ]

]
= E

[
e−Sk

]
=

k−1∏
i=0

E
[
e−Ei

]
=

k−1∏
i=0

f (i)
1 + f (i)

P(NY = k) =
k−1∏
i=0

f (i)
1 + f (i) −

k∏
i=0

f (i)
1 + f (i) = µk
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Stein Operator for PA

for all g : N0 → R

E
[
g
(
NY
)]

=
∫ ∞

0
E
[
g
(
Ns
)]
e−sds

= g(0) +
∫ ∞

0
E
[
f
(
Ns
)(

g
(
Ns + 1

)
− g

(
Ns
))]

e−sds

= g(0) + E
[
f
(
NY
)(

g
(
NY + 1

)
− g

(
NY
))]

.

Stein operator: Choose

Ag(k) :=f (k)
(
g(k + 1)− g(k)

)
+ g(0)− g(k)

=f (k)∆g(k) + g(0)− g(k)

for ∆g(k) = g(k + 1)− g(k).
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Stein Equation for PA

With
Ag(k) = f (k)∆g(k) + g(0)− g(k)

and

µ = (µk) =
( 1
1 + f (k)

k−1∏
i=0

f (i)
1 + f (i)

)
k

we have

W ∼ µ ⇔ E[Ag(W )] = 0

for all g : N0 → R such that E[g(W )] <∞.
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Solution to Stein’s Equation for PA

Let (Zt) denote a Markov chain with generator A
solution of AgA = h − µ(h) for any h = 1A, with A ⊂ N0 is given by

gA(k) = −
∫ ∞

0

(
Ekh(Zt)−

∫
hdµ

)
dt

if it exists.
Barbour (1988), Götze (1991)

here: The solution can be checked using Kolmogorov’s backward
equation for Markov chains and a small coupling argument
smoothness estimate:

f (k)∆g(k) ≤ 1 for all k ∈ N0

following techniques in Brown, Xia (2001)
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Bounding the Stein Operator

dynamic way of generating a uniform random variable on {1, . . . , n}
cf. Ford (2009)

Let Jn be a Markov chain with J1 = 1 and such that

P(Jn+1 = Jn | Jn) = n
n + 1 and P(Jn+1 = n + 1 | Jn) = 1

n + 1 .

For any n, Jn ∼ U({1, . . . , n})

Wn := deg−(Un) d= Xn := deg−(Jn)

(Xn) is a time-inhomogeneous, discrete Markov chain, with generator

f (k)
n + 1∆g(k) + 1

n + 1(g(0)− g(k))
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Bounding the Stein Operator

Wn
d= Xn := deg−(Jn)

transition probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =


f (i)
n+1 if j = i + 1,

n−f (i)
n+1 if j = i ,
1

n+1 if j = 0,

and

P(Xn+1 = j |Xn = 0) =


f (0)
n+1 if j = 1,

1− f (0)
n+1 if j = 0.

Hanna Döring Fluctuations in a general PA model 25 June 2019 15 / 25



Bounding the Stein Operator

Wn
d= Xn := deg−(Jn)

transition probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =


f (i)
n+1 if j = i + 1,

n−f (i)
n+1 if j = i ,

1
n+1 if j = 0,

and

P(Xn+1 = j |Xn = 0) =


f (0)
n+1 if j = 1,

1− f (0)
n+1 if j = 0.

Hanna Döring Fluctuations in a general PA model 25 June 2019 15 / 25



Bounding the Stein Operator

Wn
d= Xn := deg−(Jn)

transition probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =


f (i)
n+1 if j = i + 1,
n−f (i)

n+1 if j = i ,
1

n+1 if j = 0,

and

P(Xn+1 = j |Xn = 0) =


f (0)
n+1 if j = 1,

1− f (0)
n+1 if j = 0.

Hanna Döring Fluctuations in a general PA model 25 June 2019 15 / 25



Bounding the Stein Operator

Wn
d= Xn := deg−(Jn)

transition probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =


f (i)
n+1 if j = i + 1,
n−f (i)

n+1 if j = i ,
1

n+1 if j = 0,

and

P(Xn+1 = j |Xn = 0) =


f (0)
n+1 if j = 1,

1− f (0)
n+1 if j = 0.

Hanna Döring Fluctuations in a general PA model 25 June 2019 15 / 25



Bounding the Stein Operator

Wn
d= Xn := deg−(Jn)

transition probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =


f (i)
n+1 if j = i + 1,
n−f (i)

n+1 if j = i ,
1

n+1 if j = 0,

and

P(Xn+1 = j |Xn = 0) =


f (0)
n+1 if j = 1,

1− f (0)
n+1 if j = 0.

Hanna Döring Fluctuations in a general PA model 25 June 2019 15 / 25



Bounding the Stein Operator

aim: Bound
|E[AgA(Wn+1)]| = |EAgA(Xn+1)]|
= |E[f (Xn+1)∆gA(Xn+1) + gA(0)− gA(Xn+1)]|

= |E[vA(Xn+1) + gA(0)− gA(Xn+1)]| for vA(Xn) = f (Xn)∆gA(Xn).
Let h : N0 → R be such that h(0) = 0, then

E [h(Xn+1)] = E [E [h(Xn+1) |Xn]]

= E
[
h(Xn) n − f (Xn)

n + 1 + h(Xn + 1) f (Xn)
n + 1

]
= n

n + 1E[h(Xn)] + 1
n + 1E[f (Xn)∆h(Xn)].

iteration and X1 = 0 yields

E [h(Xn+1)] = 1
n + 1

n∑
`=1

E[f (X`)∆h(X`)].
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Bounding the Stein solution

E [h(Xn+1)] = 1
n + 1

n∑
`=1

E[f (X`)∆h(X`)]

for h(k) = AgA(k)− vA(0) = vA(k) + gA(0)− gA(k)− vA(0):

E[AgA(Xn+1)] = E[h(Xn+1)] + vA(0)

= 1
n + 1

n∑
`=1

(
E[f (X`)∆vA(X`)]− E[f (X`)∆gA(X`)]

)
+ vA(0)

= 1
n + 1

n∑
`=1

`−1∑
k=0

f (k)∆vA(k)P(X` = k)

− 1
n + 1

n∑
`=1

`−1∑
k=0

(vA(k)− vA(0))P(X` = k) + vA(0)
n + 1 .
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Bounding the Stein solution

For the second sum, we write

`−1∑
k=0

(vA(k)− vA(0))P(X` = k) =
`−1∑
k=0

k−1∑
i=0

∆vA(i)P(X` = k)

=
`−1∑
i=0

∆vA(i)
`−1∑

k=i+1
P(X` = k) =

`−1∑
i=0

∆vA(i)P(X` ≥ i + 1).

Therefore,

E[AgA(Xn+1)] = 1
n + 1

n∑
`=1

`−1∑
k=0

f (k)∆vA(k)P(X` = k)

− 1
n + 1

n∑
`=1
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Bounding the Stein solution

Thus, we used the Markov structure to show

E [AgA(Xn+1)] = 1
n + 1

( n∑
`=1

`−1∑
k=0

∆vA(k)h(k, `) + vA(0)
)
,

where

vA(k) := f (k)∆gA(k)

smoothness estimate!

and h(k, `) := f (k)P(X` = k)− P(X` ≥ k + 1).

Note: h(k, `) = 0 for X` ∼ µ
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Bounding the Stein solution

By discrete integration by parts formula and h(`, `) = 0:

`−1∑
k=0

∆vA(k)h(k, `) = −vA(0)h(0, `)−
`−1∑
k=0

vA(k + 1)∆kh(k, `).

∣∣E[AgA(Xn+1)]
∣∣

≤ |vA(0)|
n + 1 +

∣∣∣ 1
n + 1

n∑
`=1

(( `−1∑
k=0

vA(k + 1)∆kh(k, `)
)

+ vA(0)h(0, `)
)∣∣∣

≤ |vA(0)|
n + 1 + 2

n + 1 sup
k
|vA(k)|

n∑
`=1

sup
k≤`−1

h(k, `).
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Bounding the Stein solution

And finally

dTV(Wn,W ) = sup
A⊂N0

∣∣E[AgA(Xn+1)]
∣∣

≤ 1
n + 1 + 2

n + 1

n∑
`=1

sup
k≤`−1

h(k, `)

≤

{
C log(n)

n for slowly growing f
C 1

n1−γ for f (k) = k + γ.
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Theorem 3 (Betken, D., Ortgiese, 2019)

Let Dn denote the outdegree of vertex n in a preferential attachment
model satisfying our assumptions.

Suppose f (k) ≤ γk + 1 for γ ∈ (0, 1). Then there exists C > 0 such
that

dTV(Dn,Po(λn)) ≤ C


1

n+1 , for 0 < γ < 1
2 ,

log(n)
n , for γ = 1

2 ,

n−2(1−γ), for 1
2 < γ < 1,

where λn = E [f (Wn−1)] .
Known: λn → λ := E[f (W )], where W ∼ µ.
Dereich, Mörters (2009)
If f (k) = γk + β for γ ∈ (0, 1), β ∈ [0, 1], then

|λn − E [f (W )]| ≤ n−1+γ .
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Proof of Theorem 3: Stein’s method

Dn =
∑n−1

i=1 1{n→i}

Defining

pi ,n := P(1{n→i} = 1) = E[1{n→i}]

= E
[
E
[
deg−n (i)− deg−n−1(i)|Gn−1

]]
= E

[
f (deg−n−1(i))

n − 1

]
,

we have

λn := E[Dn] = E
[ 1
n − 1

n−1∑
i=1

f (deg−n−1(i))
]

= E [f (Wn−1)] .
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Proof of Theorem 3: Stein’s method

Stein’s equation

E[λg(Z + 1)− Zg(Z )] = 0 for all bounded g:N→ R ⇔ Z ∼ Po(λ)

Barbour, Hall (1984):

dTV(Dn,Po(λn)) ≤ 1− e−λn

λn

n−1∑
i=1

p2
i ,n ≤ min

{
1, 1
λn

} n−1∑
i=1

p2
i ,n.

here:
n−1∑
i=1

p2
i ,n = 1

(n − 1)2

n−1∑
i=1

E[f (deg−n−1(i))]2
(∗)
≤ 1

(n − 1)2

n−1∑
i=1

(n
i

)2γ
,

(∗): see Dereich, Mörters (2013).
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Dynamic Random Networks

joint projekt with Stephan Bussmann, Matthias Reitzner and from
computer science Nils Aschenbruch

telecommunication network
Poisson nb. of people with a cell phone
with a communication zone depending on the Carcasonne grid

Hug, Last, Schulte (2016):
CLT for geometric functionals of Boolean models
generalize for compact sets depending on the Carcasonne grid – and
for moving participants!
Thank you!
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