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© Introduction



A statistical model of a curved exponential family
2 = {plo ) = s(x) xpl¢ (s ~ W(0()
' u=(Wel, a=1,....d,i= 1,...,m},

where UcR%and1<d<m.

We have observations x" = {x(1), x(2), ..., x(n)} independently
distributed according to a density p(x; u) € 2.

Einstein’s summation convention: if an index occurs as an upper and
lower index in one term, then the summation is implied.

m
0'x; = Z 0'x;.
i=1



The objective is to construct a predictive density of y = x(n+ 1)
which is independently distributed according to the same density

p(y; u).
The Kullback—Leibler divergence loss

Dip(y:u)ip(y: ) = [ ply: u)log gg :’; dy.
The risk function
EID(p(y; u); B(y: u))] = f p(x"; u)Dip(y; u); P(y; u))dx"

The Bayes risk

f fp x"; u)D{p(y; u); p(y; u)}dx"du

with respect to a prior 7(u



Two methods for constructing predictive densities

() A plugin density

p(y; u(x"))
is constructed by plugging-in an estimator &(x") to the unknown
parameter of the model, which is included in .

(if) A Bayesian predictive density is defined by

p(y | x") = f p(y; u)p.(u | x")du

where p,(u | x") is the posterior density

p(x"; u)r(u)

pir(U | X”) = fp(xn; U)?T(U)dU

of u.



In many examples, the Bayesian predictive density is not
included in the model &.

The Bayesian predictive density is optimal about the Bayes risk
in terms of the Kullback—Leibler divergence in the family of all
probability distributions, which we denote as & (Aitchison,
1975).

However, the explicit form of the Bayesian predictive density is
often intractable.

In such examples, the numerical calculations of Bayesian
predictive densities are burdensome because it involves
integrations in the space of probability density functions.



For multivariate normal models, Xu and Zhou (2011) proposed a
class of empirical Bayes predictive densities to avoid intractable
implementation of Bayesian predictive densities.

Here, we consider a distinct class of predictive densities and our
focus is on models of curved exponential families including full
exponential families such as multivariate normal models.



We consider a full exponential family

& = {p(x; 6) = s(x) exp(&'x; — V(6))
‘9:: (@)e©CR™, i= 1,...,m}

including &.

We refer to plugin distributions in & as extended plugin distributions,
and investigate the properties of extended plugin distributions.

The inclusion relation is & € & € & and we consider the middle
layer of the three-layer structure.






The coordinate system 6 = (¢') (i = 1,..., m) is called natural
parameters of exponential families.

Another coordinate system n = (n;) defined by

ni = E[x] = %\u(e) (i=1,....m),

is called expectation parameters.



Outline (1/2)

e We show that the extended plugin density with the posterior
mean of n is optimal in the class of the extended plugin
densities.

e The Bayes risk of the Bayesian predictive density is not greater
than that of the extended plugin density because the Bayesian
predictive density is optimal under the Bayes risk with the
Kullback—Leibler loss,

e However, evaluating extended plugin densities is less difficult
than evaluating Bayesian predictive densities.

e The properties of extended plugin densities are investigated
from an information-geometric view.



Outline (2/2)

e The extended plugin of the Bayes estimator and the Bayesian
predictive distribution are parallel in that the Bayesian
predictive distribution is optimal in & and the extended plugin
of the Bayes estimator denoted herein as p(y; 7, ) is optimal in
& regarding the Bayes risk.

e We show that several geometric results of Bayesian predictive
densities also hold for p(y; 7i,) parallelly.
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® Extended plugin densities



To construct predictive densities, plugin densities with estimators of
u (e.g., the maximum likelihood estimator i or the Bayes
estimator 0,) are often used.

The posterior mean of u for plugin densities is
[ up(x"; ur(au)

U, = ,
[ p(x"; u)x(du)

and when we consider the full exponential family, the posterior
mean of i for extended plugin densities is

- Jup(x";n(u))x(du)
" [p(xmn(u))a(du)

Note that 77,(x") # n(u.(x")) in general.



Example (spike model)

We consider inference of the eigenvector and the eigenvalue of the
I-dimensional Gaussian distribution N(0, ¥) with zero mean vector
and unknown covariance matrix.

The covariance matrix X is supposed to be
Y = Aww" + 1,

where the vector w € R/ satisfies w"w = 1 and 1 > 0.

The eigenvalues of the matrix X are 4+ 1,1,...,1, and w is the first
eigenvector.

The model & = {N(0,X) | (w, 1)} is parametrized by (w, 1), and the
plugin density with the posterior mean @y, A, is N(0, X(@y, ;).

On the other hand, the posterior mean of the matrix X is another

natural estimator of X other than (&, 4,).



In principal component analysis, estimating the matrix and then
decomposing the estimated matrix is a natural way to obtain
estimators of eigenvalues and eigenvectors.

The components of >~ comprise the coordinate system (_77,-) of the
extended statistical model & = {N(0, X) | &}, thus p(y; ¥,) is the
extended plugin density with the posterior mean of 7.

Consequently, 77, appears to be a natural estimator for curved
exponential families.



The optimal extended plugin density

Proposition

The Bayes risk of p(y; 1), where fj is an estimator of nj, is minimized
when i) = 1,.



Proof
Let § be an estimator of 6. Note that 6 and n are functions of u. The
Kullback—Leibler loss of p(y; 6) is

Dip(y; 6(u)); p(y;: H)} fp y; 0)log (eXp 0= (A;))dy

exp(fly; — V()
i — (W(0) — V(D).

Hence
[ w1 x)0tp(vs600)): P13 e
=Dip(y:7); p(y: 0)) + (-6'Gi)i7 + 6 + W(6(7)) - W(6)),
where, for a function (1), f(7) = [ p(u | x")f(n)du.

The Bayes risk is minimized when 8 = 6(77) = 6(7,,).

Thus p(y | 77,) is optimal with respect to the Bayes risk in the class

of extended plugin densities. O
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Example Fisher circle model (1/4)
Two dimensional Gaussian distributions N(y, I2) with unknown
mean vector u and the identity covariance matrix /.

The probability density is

p(x;u) = 21_71 exp [—% {(X1 — 1)+ (% —,Uz)z}]

2n 2 2

When the mean vector u is expressed as

1 1 1
= 5 €Xp (—_(X12 + XS)) exp (X1,U1 + Xople — 5 (ﬂ? + ﬂg)) -

MUy = COS w, U2 = SiN w,
the 1-dimensional submodel is called the Fisher circle model.
Here,

0' =n =, 6 =n> = po.

20



Example Fisher circle model (2/4)

We derive the Bayes estimator of w, the extended plugin of the
Bayes estimator 7,, and the Bayesian predictive density.

For x™ = {x(1),x(2),...,x(n)},

p(x™ ) Uzl ( IIx(t) 2(w)||2)

exp(—zi:‘( 1(t)22 () g()‘(f +x2)

REL
X eXp (—gnx —,u(w)||2)

where X = X7, x(t)/n.
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Example Fisher circle model (3/4)

Let x = (||x]cos ¢, |IX||sing)T.

When the uniform prior
n(w) o 1

is adopted, the posterior distribution is
1
(W | X") = ————— exp(n||X|| cos(w — ¢)).
el | X7) = 5 s e (0-9))

The Bayes estimator

Thus,
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Example Fisher circle model (4/4)

The posterior mean of n is

5 _ bl x
" To(nlxI) X1

which is not included in the circle parametrized by w and 7}, # n(&,)-

The Bayesian predictive density is given by

Pl | X7) = ;—ﬂ% eXp{—%(llyllz T 1)}.

Therefore p,(y | x") is not included in & or & because it is not a
two dimensional Gaussian with covariance matrix I.
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© Information geometry of extended plugin densities
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Information-geometric notions
Let a, b, ... be indices for u.

Let T, < be the tangent space of & at a point u.

The tangent space T,2 is identified with the vector space spanned
by d.p(x; u) (a=1,...,d), where 9, denotes 9/du?.

Define inner products in the tangent space by

1
(r,s) = frsp(x; m dx. (1)

For a statistical model &, each component of the Fisher information
matrix is defined by

dap(X; u)dpp(X; )

p(x; u) ™

Gap(U) = (Bap(X; U), Bpp(x; U)) = f

and let g% be a component of the inverse matrix of (gap)-

25



The e-connection coefficients and the m-connection coefficients are
defined by

[

() = [ plx; 10,05 10 p(x; )}13:log plx; )

and

;lbc(u): f 020pp(X; U)Acp(X; U) ox.

: p(x; u)
respectively. We define

€ €

Fa abdg ’ ab -

8
~B

bdg ,

To
I

and
m

€
Tabc =1, - T

abc abc

= fp(x; u){da log p(x; u)Hap log p(x; u)}{d. log p(x; u)}dx.
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The Jeffreys prior density is given by

where |g(u)| is the determinant of the matrix (ga»(U))-
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The coordinate systems (6') and (»;) of the exponential family & are
dual to each other in the sense that

0 0 -

— 1 0), — :0)) =6 2
(P tcie) 5p(xi6) =5 @)
where 5]’? is the Kronecker delta.

For a curved exponential family, e-connection coefficients and
m-connection coefficients are expressed as

c

I ope = (5a0b9’)(5cni) and I, = (5a0bni)(0c9'), (3)

respectively.
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The asymptotic expansion of 7}, around r( Uy g)-

Theorem

The posterior mean of n, which is the Bayes estimator of n, based
on a prior n(u) is expanded as

. . 9% (One)
T — U B ———
e = n(Oveg) + o

n 9% (i) (
n

(9a00(01015) = 1,5 D)o (Ovcr)

Tp(Umie)

5 )(9a77(0MLE) +o(n™),

T .
dp log ﬂ__J(UMLE) +

where T, = Tapcg*®.
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Let L(n) = + X1 log p(x(t); 7). Then, f(x") = {(.)i(x")} is given
by

[ n(p(x" n(u))r(u)du [ n(u) exp(nl (n(u)))x(u)du
JpGrn@)n(uyds [ exp(nL(r(w)r(u)du

We approximate 7}, by the Laplace method.

ﬁn(Xn) =

30



The asymptotic expansion of the extended plugin
density

Theorem

The extended plugin density with 7, is expanded as

p(y; <) = p(y: n(Umig))
gab(aMLE)
+ 2n (

9% (Onie)
n

aaabni(uMLE) - Fag(aMLE)acni(aMLE)) aip(y; i:IMLE)

Tp(Unie)

* 2

T, . N _
dp log ﬂ__J(UMLE) + )aap(y; tvie) + 0p(n7),

where thy g is the maximum likelihood estimator and ' = %

I

K (1996) gave an asymptotic expansion of Bayesian predictive
distributions around the plugin of ihy g, and our results are parallel

to the results.
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The shift to p(y; 7,) in Theorem 2 is composed of two components,
one “parallel” to and the other “orthogonal” to the model 2.

That is, the term
gab(aMLE) ( Tb(aMLE)
n

TN
Jp log 7T_J(UMLE) + >

)aap(}’? Uniig)
is included in the space spanned by d,p(y;n) (a =1,...,d) and
the term

9°° (e

S (2a0m(Onae) — T (D)o (Dnae) ) LY Ova)

is orthogonal to d,p(x; n) (a = 1,...,d) with respect to the inner
product (1).
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<(6aabm — I,50:m)0'p(y: 1), dep (¥ n)>

m

B op(y;n) 06 dp(y;n) 1
= 6361317,- 9 o - -
mioue 90 p(yin

- aaabr]laeel - Fabe - O.

)dy - FaggCe
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We devide the tangent vectors of & at n into two parts, namely
those parallel to & and those orthogonal to .

For each point € &, the tangent space T,& is identified with the
vector space spanned by

0

a—mp(x;n) (i=1,....,m).

The tangent space T, is a subspace of T,&.
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Let A(u) be an (m — d)-dimensional smooth submanifold of &
attached to each point u € & and assume that A(u) orthogonally
transverses & at n(u).

Such a family of submanifolds {A(u)} is called an ancillary family.

We introduce an adequate coordinate system
v=(v)(k=d+1,...,m)to A(u) so that a pair (u, v) uniquely
specifies a point of & in the neighborhood of n(u).

We adopt a coordinate system v on A(u) such that n(u, v) € / if
v =0.
Then, we have
span {0'p(x; )} = span {3ap(x; 7). .p(X; )}
where d,p(x; 1) = 7=p(X; 7).
Since A(u) orthogonally transverses &, we have

@ap(x;m),0p(x;m)y =0 (a=1,...,d, k=d+1,...,m).
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In the following discussion, we consider extended plugin densities
p(y; 1) with estimators #; = n(d, V) where 0, V can be expressed in
the form

A 1 . _ 1 _
U= Uwig + EQ’(UMLE) + op(n 1), vV = E,B(UMLE) + op(n 1),

respectively.
Here a?(u), 8*(u) are smooth functions of O,(1).

Those densities can be expanded as

Pap(Y; Ovie) = p(y; Umie)

1 R R 1 n N
+ Eaa(uMLE)aap(y; n(lwvie)) + E/J’K(UMLE)GKP(Y; n(tee)) + 0p(n7").
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This class of extended plugin densities include p(x; img) and
p(X; ).

For & = Uy g and B(u) = 0 for k = d + 1,..., m, the density is the
plugin density with the maximum likelihood estimator ihy k.

The extended plugin density with the Bayes estimator 7, in
Theorem 1 is given by

N N r T . 1m .
a?(Uvig) = gab(uMLE) (5b log F—J + —b) , B'= 2Hab(UMLE)gab(UMLE)

where

8

Habk = <8aabp(X; u),akp(x; 77)> = (836[37],-)(6,(9')

is the mixture embedding curvature of 2 in & and H} = H,, ,g**.
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This can be confirmed as follows. Let
hay = (aaabni(u))aiP(X; 77) - Fagacp(X; U)’
then the orthogonal component in Theorem 1 is

gab(aMLE)

hap (Chiig)-
on ab(Uvie)

Since hy, (a,b =1,...,d) are included in the space spanned by
op(x;u) (k=d+1,...,m),

hap = (hap, 0,0(X; 7)) 0.p(X; 1)

= <5a0bni(U)3’P(X 1) = Ip00p(X; U), 0ap(X; 77)> ga.p(x;m).
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Because (dc.p(x; 1), d,p(x;n)) =0,

hay = (Da0pmi(U)'P(X; 17), ap(X; U)GDP(x; 1)

_ i . a@! ap(X' 77) KA .

_ 0,00 (u) <a p(; ). 22 PPN gt pi)
= 020pmi(U)0,0'g“'0,p(x; 1)

= H;d.p(x;n).
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Optimal orthogonal shift

We derive the Kullback—Leibler risk of the extended plugin densities.
Proposition

The Kullback—Leibler risk of a extended plugin density p. s(y; UmLe)
is asymptotically expanded as

E[Dip(y; ), Pap(y: Unne))]
1 1¢
:ﬁgab(u)aa(u)ab(u) + ﬁVaaa(u)
1 1o
b 5 0a(UB(B(U) ~ 5o (U)g (0B (0)
+ (terms independent of a,8) + o(n2),

(S (S
where V,a? = d,a® + I',2a°.
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We obtain the optimal orthogonal shift.
Theorem
The optimal B* is given by

1m

Bo(u) = 5Ha5(u)g™ (u).

2
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Proof.
The risk in Proposition 2 is

E[D{p(y; u), Pos(y; Umg)}]

1 1¢
:ﬁgaba’aab + ﬁVaaa(u)

1i 1m 1m p 1 m m B
+ ﬁgkxl (ﬂ/l - EHaggab) (BK - EHcdng) - @HachdgabnggK/l
+ (terms independent of @, 8) + o(n"2).

Thus g is optimal when
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Therefore, the orthogonal component of the shift in Theorem 2 is
optimal.

The extended plugin density with 7, has the optimal shift.

The risk difference between a plugin density p,o(y; Umig)) and a
extended plugin density p, s, (y; thLe)) With the optimal orthogonal
shift is given by

E[D(p(y; u), Pao(y; Uwig))] = E[D(P(Y; U), Papo (V: Uniii))]

1 m m B
:ﬁHachggabngQu +o(n7?).

m m
Here, H, H g?*g°g.. is the mixture mean curvature of &

embedded in /Z at ug.
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The optimal orthogonal obtained by K (1996) is not in the tangent
space of exponential families &.

Thus, the shifted plugin density is not icncluded in &.

Our optimal shift is included in the tangent space of &, and the
shifted plugin density is included in &.

The optimal orthogonal shift of K (1996) is

gab(aMLE)a 5 . I"lc N A
5 0a bP(Y; Uvii) — I (Uvie)9cp(y; Umie)- (4)

Our optimal shift is a projection of (4) onto the tangent space of &
because

ab ] . m o ~ . R
<%5aabp(y; Onvie) — Ig (Onviee)dcp(y; Uvie), 0ap(y; UMLE)> g oup(y; Omie)

_ 9% (Owie) o A A o
=" (020ppP(y; UmLe), 0ap(Y; UmLE)) 9 0P (Y UMmLE)

9% (Onvie o N
= %Habakp(y; UmLE).
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Example (Fisher circle model, continued)
We have g,,, = 1and I ¢ = 0.

Thus, the optimal orthogonal shift is

m

huw(X; 1) = (5ww77i - Fw‘;’ﬁwm) aip(x;n)
= p(x; n7)(=cos w(xs — 1) — sinw(Xz — 12))
and the risk improvement by the optimal orthogonal shift is
E[D(p(; @), Pao(¥; @wme))] = E[D(P(Y; @), P (¥ Omiri))]
Z#?’aﬁ Hi6®67 g0 + o(m2)
:#E[(_ cos w(ys —11) = sinw(yz — 12))?] + o(n?)

1 -2
:@ + O(n )

The risk improvement by the optimal shift is % + o(n2).
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If the variance of x4, x, is 02, the risk improvement by the extended
plugin p(y; 7j,) and by the Bayesian predictive density are
o? o?+2
8n2’  8n?2 ’
respectively.
Therefore when o2 is large, the risk improvement by p(y; #)

becomes relatively large, and the performance of the extended
plugin density is close to that of the Bayesian predictive densityl.

From an information-geometric point of view, the orthogonal shift to
p(y; i) is the projection of the orthogonal shift to the Bayesian
predictive density onto the tangent space of &, and the cosine of
the angle between the two shift vectors is

\/0’2 \/0'2+2_ o2
8n2 82~ No24+2°

Thus the angle between those shifts approaches to 0 as o2 grows.
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Example 2-dimensional spike model

We consider the 2-dimensional spike model, namely 2-dimensional
Gaussian distributions with zero mean vector and unknown
covariance matrix that is expressed as

v cos¢ —sing \[ A+1 O cos¢ sing
~\ sing cos¢ 0 1 —sing cos¢ |’
where 4 > 0.
The eigenvalues of > are 1 + 1 and 1.
The model & = {N(0,X) | (4, ¢)} is parametrized by (4, ¢).

The components of ¥ are the coordinate system (7;) of the
extended statistical model & = {N(0, X) | ¥}, thus p(y; X,) is the
extended plugin density with the posterior mean of 7.
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In this model,

r¢¢/l = m’ F¢A¢ = 1+1 ) A A — g —

hold.
The optimal orthogonal shift is

ab ab

g g9 =
Ehab(y; n) = TS (3ab77i - Fagﬁcm) aip(y;n)
- A+1

= S {(=y1sin¢ + y cos ¢)? - 1ip(y;n).
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The risk improvement by the optimal orthogonal shift is
E[D(p(y; @), Pao(y: ©mie))] — E[D(P(Y; @), Pagon (Vi OMLE))]
1 _
:@HZn,ngthkllz +o(n7?)

:#E H#((—w sin¢ + y» cos ¢)? — 1)}zl +o(n?)
1 (A+1) _
“ae 1) Foed

The risk improvement by the optimal shift in & is

_{(_)}()

Therefore, the risk improvement by the extended plugin grows as 1
approaches to zero.

Much less numerical computation is required to otbain extended
plugin densities than to obtain Bayesian predictive desities.



O Shrinkage priors
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We consider the choice of priors for the extended plugin with the
Bayes estimator 7j;.
The Laplacian A on a manifold with the Riemannian metric gz, is
defined by

Af = |gI7"284(19"? 9 0b ),

where f is a smooth function on the model manifold.
A C? function f is called superharmonic if Af < 0.

Theorem

Suppose that & is a smooth positive function on the model manifold
2. The extended plugin density p(y; fi.) based on n asymptotically
dominates the extended plugin density p(y; fi.,) based on the
Jeffreys prior n, if and only if (x/n,)"/? is a non-constant positive
superharmonic function.
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Proof.
The risk difference is

E[D(p(y: u); p(y: fix,))] = E[D(p(y: u); p(y;ix))
1/2 x\'2
. (Q) / A(—) +o(n7?).

]

53



The superharmonic condition for priors for Bayesian predictive
distributions is obtained in K(2006), and Theorem 4 is its parallel
result for extended plugin distributions of Bayes estimators.

Shrinkage priors are closely related to the superharmonic condition.

For example, the Stein prior (i) = ||ul|~(9~2) for the estimation of
mean vector u of d-dimensional Gaussian distributions is and it
satisfies the superharmonic condition when d > 2.

Consequently, Theorem suggests that shrinkage priors are effective
for constructing an extended plugin of the Bayes estimator.

For the multivariate normal model with known covaraince matrix,
finite sample theories have been developed, see K (2001), George
et al. (2006), George et al. (2012).
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Conclusion

© The extended plugin density with the posterior mean of the
expectation parameter n of the full exponential family is shown
to be optimal regarding the Bayes risk based on the
Kullback—Leibler divergence if we choose a predictive density
from the full exponential family.

® Several results are obtained from information-geometric
viewpoints. The results are parallel to those for Bayesian
predictive distributions.
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