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A statistical model of a curved exponential family

P =

{
p(x; u) = s(x) exp(θi(u)xi −Ψ(θ(u)))∣∣∣∣ u := (ua) ∈ U, a = 1, . . . , d, i = 1, . . . ,m

}
,

where U ⊂ Rd and 1 ≤ d ≤ m.

We have observations xn = {x(1), x(2), . . . , x(n)} independently
distributed according to a density p(x; u) ∈ P.

Einstein’s summation convention: if an index occurs as an upper and
lower index in one term, then the summation is implied.

θixi =
m∑

i=1

θixi .
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The objective is to construct a predictive density of y = x(n + 1)
which is independently distributed according to the same density
p(y; u).

The Kullback–Leibler divergence loss

D{p(y; u); p̂(y; u)} =
∫

p(y; u) log
p(y; u)
p̂(y; u)

dy.

The risk function

E[D{p(y; u); p̂(y; u)}] =
∫

p(xn; u)D{p(y; u); p̂(y; u)}dxn.

The Bayes risk∫
π(u)

∫
p(xn; u)D{p(y; u); p̂(y; u)}dxndu

with respect to a prior π(u).
4



Two methods for constructing predictive densities

(i) A plugin density
p(y; û(xn))

is constructed by plugging-in an estimator û(xn) to the unknown
parameter of the model, which is included in P.

(ii) A Bayesian predictive density is defined by

pπ(y | xn) =

∫
p(y; u)pπ(u | xn)du

where pπ(u | xn) is the posterior density

pπ(u | xn) =
p(xn; u)π(u)∫
p(xn; u)π(u)du

of u.

5



• In many examples, the Bayesian predictive density is not
included in the model P.

• The Bayesian predictive density is optimal about the Bayes risk
in terms of the Kullback–Leibler divergence in the family of all
probability distributions, which we denote as F (Aitchison,
1975).

• However, the explicit form of the Bayesian predictive density is
often intractable.

• In such examples, the numerical calculations of Bayesian
predictive densities are burdensome because it involves
integrations in the space of probability density functions.
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For multivariate normal models, Xu and Zhou (2011) proposed a
class of empirical Bayes predictive densities to avoid intractable
implementation of Bayesian predictive densities.

Here, we consider a distinct class of predictive densities and our
focus is on models of curved exponential families including full
exponential families such as multivariate normal models.
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We consider a full exponential family

E =

{
p(x; θ) = s(x) exp(θixi −Ψ(θ))∣∣∣∣ θ := (θi) ∈ Θ ⊆ Rm, i = 1, . . . ,m

}
including P.

We refer to plugin distributions inE as extended plugin distributions,
and investigate the properties of extended plugin distributions.

The inclusion relation is P ⊆E ⊆ F and we consider the middle
layer of the three-layer structure.
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The coordinate system θ = (θi) (i = 1, . . . ,m) is called natural
parameters of exponential families.

Another coordinate system η = (ηi) defined by

ηi = E[xi] =
∂

∂θi
Ψ(θ) (i = 1, . . . ,m),

is called expectation parameters.
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Outline (1/2)

• We show that the extended plugin density with the posterior
mean of η is optimal in the class of the extended plugin
densities.

• The Bayes risk of the Bayesian predictive density is not greater
than that of the extended plugin density because the Bayesian
predictive density is optimal under the Bayes risk with the
Kullback–Leibler loss,

• However, evaluating extended plugin densities is less difficult
than evaluating Bayesian predictive densities.

• The properties of extended plugin densities are investigated
from an information-geometric view.
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Outline (2/2)

• The extended plugin of the Bayes estimator and the Bayesian
predictive distribution are parallel in that the Bayesian
predictive distribution is optimal in F and the extended plugin
of the Bayes estimator denoted herein as p(y; η̂π) is optimal in
E regarding the Bayes risk.
• We show that several geometric results of Bayesian predictive

densities also hold for p(y; η̂π) parallelly.
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To construct predictive densities, plugin densities with estimators of
u (e.g., the maximum likelihood estimator ûMLE or the Bayes
estimator ûπ) are often used.

The posterior mean of u for plugin densities is

ūπ :=

∫
up(xn; u)π(du)∫
p(xn; u)π(du)

,

and when we consider the full exponential family, the posterior
mean of η for extended plugin densities is

η̄π :=

∫
ηp(xn; η(u))π(du)∫
p(xn; η(u))π(du)

.

Note that η̄π(xn) , η(ūπ(xn)) in general.
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Example (spike model)

We consider inference of the eigenvector and the eigenvalue of the
l-dimensional Gaussian distribution N(0,Σ) with zero mean vector
and unknown covariance matrix.

The covariance matrix Σ is supposed to be

Σ = λωω⊤ + Il ,

where the vector ω ∈ Rl satisfies ω⊤ω = 1 and λ > 0.

The eigenvalues of the matrix Σ are λ+ 1, 1, . . . , 1, and ω is the first
eigenvector.

The model P = {N(0,Σ) | (ω, λ)} is parametrized by (ω, λ), and the
plugin density with the posterior mean ω̄π, λ̄π is N(0,Σ(ω̄π, λ̄π)).

On the other hand, the posterior mean of the matrix Σ is another
natural estimator of Σ other than Σ(ω̄π, λ̄π).
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In principal component analysis, estimating the matrix and then
decomposing the estimated matrix is a natural way to obtain
estimators of eigenvalues and eigenvectors.

The components of Σ comprise the coordinate system (ηi) of the
extended statistical model E = {N(0,Σ) | Σ}, thus p(y; Σ̄π) is the
extended plugin density with the posterior mean of η.

Consequently, η̄π appears to be a natural estimator for curved
exponential families.
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The optimal extended plugin density

Proposition
The Bayes risk of p(y; η̂), where η̂ is an estimator of η, is minimized
when η̂ = η̄π.
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Proof
Let θ̂ be an estimator of θ. Note that θ and η are functions of u. The
Kullback–Leibler loss of p(y; θ̂) is

D{p(y; θ(u)); p(y; θ̂)} =
∫

p(y; θ) log
exp(θiyi −Ψ(θ))

exp(θ̂iyi −Ψ(θ̂))

 dy

= (θi − θ̂i)ηi − (Ψ(θ) −Ψ(θ̂)).

Hence∫
p(u | xn)D{p(y; θ(η)); p(y; θ̂(η))}du

=D{p(y; η); p(y; θ̂)}+
(
−θi(η)ηi + θiηi +Ψ(θ(η)) −Ψ(θ)

)
,

where, for a function f(η), f(η) =
∫

p(u | xn)f(η)du.

The Bayes risk is minimized when θ̂ = θ(η) = θ(ηπ).

Thus p(y | η̄π) is optimal with respect to the Bayes risk in the class
of extended plugin densities. □
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Example Fisher circle model (1/4)
Two dimensional Gaussian distributions N(µ, I2) with unknown
mean vector µ and the identity covariance matrix I2.

The probability density is

p(x; µ) =
1
2π

exp
[
−1

2

{
(x1 − µ1)

2 + (x2 − µ2)
2
}]

=
1
2π

exp
(
−1

2
(x2

1 + x2
2 )

)
exp

(
x1µ1 + x2µ2 −

1
2

(
µ2

1 + µ
2
2

))
.

When the mean vector µ is expressed as

µ1 = cosω, µ2 = sinω,

the 1-dimensional submodel is called the Fisher circle model.

Here,

θ1 = η1 = µ1, θ
2 = η2 = µ2.
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Example Fisher circle model (2/4)

We derive the Bayes estimator of ω, the extended plugin of the
Bayes estimator η̂π, and the Bayesian predictive density.

For xn = {x(1), x(2), . . . , x(n)},

p(xn;ω) =
n∏

t=1

1
2π

exp
(
−||x(t) − µ(ω)||

2

2

)
=

1
(2π)n

exp
(
−
∑n

t=1(x1(t)2 + x2(t)2)

2
+

n
2
(x̄2

1 + x̄2
2 )

)
× exp

(
−n

2
||x̄ − µ(ω)||2

)
where x̄ =

∑n
t=1 x(t)/n.
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Example Fisher circle model (3/4)

Let x̄ = (∥x̄∥ cos ϕ, ∥x̄∥ sin ϕ)⊤.

When the uniform prior
π(ω) ∝ 1

is adopted, the posterior distribution is

pπ(ω | xn) =
1

2πI0(n∥x̄∥)
exp(n∥x̄∥ cos(ω − ϕ)).

The Bayes estimator
ω̂π = ϕ.

Thus,
η(ω̂π) = x̄/∥x̄∥.
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Example Fisher circle model (4/4)

The posterior mean of η is

η̂π =
I1(n∥x̄∥)
I0(n∥x̄∥)

x̄
∥x̄∥ ,

which is not included in the circle parametrized by ω and η̂π , η(ω̂π).

The Bayesian predictive density is given by

pπ(y | xn) =
1
2π

I0(∥y + nx̄∥)
I0(n∥x̄∥)

exp
{
−1

2
(∥y∥2 + 1)

}
.

Therefore pπ(y | xn) is not included in P or E because it is not a
two dimensional Gaussian with covariance matrix I2.
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Information-geometric notions
Let a, b , . . . be indices for u.

Let TuP be the tangent space of P at a point u.

The tangent space TuP is identified with the vector space spanned
by ∂ap(x; u) (a = 1, . . . , d), where ∂a denotes ∂/∂ua .

Define inner products in the tangent space by

⟨r , s⟩ =
∫

rs
1

p(x; u)
dx. (1)

For a statistical model P, each component of the Fisher information
matrix is defined by

gab(u) = ⟨∂ap(x; u), ∂bp(x; u)⟩ =
∫
∂ap(x; u)∂bp(x; u)

p(x; u)
dx

and let gab be a component of the inverse matrix of (gab).
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The e-connection coefficients and the m-connection coefficients are
defined by

e
Γabc(u) =

∫
p(x; u){∂a∂b log p(x; u)}{∂c log p(x; u)}dx

and
m
Γabc(u) =

∫
∂a∂bp(x; u)∂cp(x; u)

p(x; u)
dx,

respectively. We define
e
Γ c

ab :=
e
Γabdgdc ,

m
Γ c

ab :=
m
Γabdgdc ,

and

Tabc =
m
Γabc −

e
Γabc

=

∫
p(x; u){∂a log p(x; u)}{∂b log p(x; u)}{∂c log p(x; u)}dx.
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The Jeffreys prior density is given by

πJ(u) =
√
|g(u)|,

where |g(u)| is the determinant of the matrix (gab(u)).
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The coordinate systems (θi) and (ηi) of the exponential family E are
dual to each other in the sense that⟨

∂

∂θi
p(x; θ),

∂

∂ηj
p(x; θ)

⟩
= δij (2)

where δij is the Kronecker delta.

For a curved exponential family, e-connection coefficients and
m-connection coefficients are expressed as

e
Γabc = (∂a∂bθ

i)(∂cηi) and
m
Γabc = (∂a∂bηi)(∂cθ

i), (3)

respectively.
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The asymptotic expansion of η̂π around η(ûMLE).

Theorem

The posterior mean of η, which is the Bayes estimator of η, based
on a prior π(u) is expanded as

η̂π = η(ûMLE) +
gab(ûMLE)

2n

(
∂a∂bη(ûMLE) −

m
Γ c

ab(ûMLE)∂cη(ûMLE)
)

+
gab(ûMLE)

n

(
∂b log

π

πJ
(ûMLE) +

Tb(ûMLE)

2

)
∂aη(ûMLE) + o(n−1),

where Ta = Tabcgbc .
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Let L(η) = 1
n

∑n
t=1 log p(x(t); η). Then, η̂π(xn) = {(η̂π)i(xn)} is given

by

η̂π(xn) =

∫
η(u)p(xn; η(u))π(u)du∫

p(xn; η(u))π(u)du
=

∫
η(u) exp(nL(η(u)))π(u)du∫

exp(nL(η(u)))π(u)du
.

We approximate η̂π by the Laplace method.
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The asymptotic expansion of the extended plugin
density

Theorem

The extended plugin density with η̂π is expanded as

p(y; η̂π) = p(y; η(ûMLE))

+
gab(ûMLE)

2n

(
∂a∂bηi(ûMLE) −

m
Γ c

ab(ûMLE)∂cηi(ûMLE)
)
∂ip(y; ûMLE)

+
gab(ûMLE)

n

(
∂b log

π

πJ
(ûMLE) +

Tb(ûMLE)

2

)
∂ap(y; ûMLE) + op(n−1),

where ûMLE is the maximum likelihood estimator and ∂i = ∂
∂ηi

.

K (1996) gave an asymptotic expansion of Bayesian predictive
distributions around the plugin of ûMLE, and our results are parallel
to the results.
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The shift to p(y; η̂π) in Theorem 2 is composed of two components,
one “parallel” to and the other “orthogonal” to the model P.

That is, the term

gab(ûMLE)

n

(
∂b log

π

πJ
(ûMLE) +

Tb(ûMLE)

2

)
∂ap(y; ûMLE)

is included in the space spanned by ∂ap(y; η) (a = 1, . . . , d) and
the term

gab(ûMLE)

2n

(
∂a∂bηi(ûMLE) −

m
Γ c

ab(ûMLE)∂cηi(ûMLE)
)
∂ip(y; ûMLE)

is orthogonal to ∂ap(x; η) (a = 1, . . . , d) with respect to the inner
product (1).
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⟨(
∂a∂bηi −

m
Γ c

ab∂cηi

)
∂ip(y; η), ∂ep(y; η)

⟩
=

∫
∂a∂bηi

∂p(y; η)
∂ηi

∂θj

∂ue

∂p(y; η)
∂θj

1
p(y; η)

dy −
m
Γ c

abgce

= ∂a∂bηi∂eθ
i −

m
Γabe = 0.
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We devide the tangent vectors of E at η into two parts, namely
those parallel to P and those orthogonal to P.

For each point η ∈E, the tangent space TηE is identified with the
vector space spanned by

∂

∂ηi
p(x; η) (i = 1, . . . ,m).

The tangent space TuP is a subspace of TηE.
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Let A(u) be an (m − d)-dimensional smooth submanifold of E
attached to each point u ∈ P and assume that A(u) orthogonally
transverses E at η(u).

Such a family of submanifolds {A(u)} is called an ancillary family.

We introduce an adequate coordinate system
v = (vκ) (κ = d + 1, . . . ,m) to A(u) so that a pair (u, v) uniquely
specifies a point of E in the neighborhood of η(u).

We adopt a coordinate system v on A(u) such that η(u, v) ∈M if
v = 0.

Then, we have

span
{
∂ip(x; η)

}
= span

{
∂ap(x; η), ∂κp(x; η)

}
where ∂κp(x; η) = ∂

∂vκp(x; η).

Since A(u) orthogonally transverses E, we have

⟨∂ap(x; η), ∂κp(x; η)⟩ = 0 (a = 1, . . . , d, κ = d + 1, . . . ,m).
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In the following discussion, we consider extended plugin densities
p(y; η̂) with estimators η̂ = η(û, v̂) where û, v̂ can be expressed in
the form

û = ûMLE +
1
n
α(ûMLE) + op(n−1), v̂ =

1
n
β(ûMLE) + op(n−1),

respectively.

Here αa(u), βκ(u) are smooth functions of Op(1).

Those densities can be expanded as

pα,β(y; ûMLE) = p(y; ûMLE)

+
1
n
αa(ûMLE)∂ap(y; η(ûMLE)) +

1
n
βκ(ûMLE)∂κp(y; η(ûMLE)) + op(n−1).
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This class of extended plugin densities include p(x; ûMLE) and
p(x; η̂π).

For û = ûMLE and βκ(u) = 0 for κ = d + 1, . . . ,m, the density is the
plugin density with the maximum likelihood estimator ûMLE.

The extended plugin density with the Bayes estimator η̂π in
Theorem 1 is given by

αa(ûMLE) = gab(ûMLE)

(
∂b log

π

πJ
+

Tb

2

)
, βκ =

1
2

m
H κ

ab(ûMLE)gab(ûMLE)

where

m
Habκ = ⟨∂a∂bp(x; u), ∂κp(x; η)⟩ = (∂a∂bηi)(∂κθ

i)

is the mixture embedding curvature of P in E and
m
H κ

ab =
m
Habλg

κλ.
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This can be confirmed as follows. Let

hab = (∂a∂bηi(u))∂ip(x; η) −
m
Γ c

ab∂cp(x; u),

then the orthogonal component in Theorem 1 is

gab(ûMLE)

2n
hab(ûMLE).

Since hab (a, b = 1, . . . , d) are included in the space spanned by
∂κp(x; u) (κ = d + 1, . . . ,m),

hab = ⟨hab , ∂λp(x; η)⟩gκλ∂κp(x; η)

=
⟨
∂a∂bηi(u)∂ip(x; η) −

m
Γ c

ab∂cp(x; u), ∂λp(x; η)
⟩

gκλ∂κp(x; η).
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Because ⟨∂cp(x; η), ∂λp(x; η)⟩ = 0,

hab = ⟨∂a∂bηi(u)∂ip(x; η), ∂λp(x; u)⟩gκλ∂κp(x; η)

= ∂a∂bηi(u)
⟨
∂ip(x; u),

∂θj

∂vλ
∂p(x; η)
∂θj

⟩
gκλ∂κp(x; η)

= ∂a∂bηi(u)∂λθigκλ∂κp(x; η)

=
m
H κ

ab∂κp(x; η).
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Optimal orthogonal shift

We derive the Kullback–Leibler risk of the extended plugin densities.

Proposition

The Kullback–Leibler risk of a extended plugin density pα,β(y; ûMLE)
is asymptotically expanded as

E[D{p(y; u), pα,β(y; ûMLE)}]

=
1

2n2
gab(u)αa(u)αb(u) +

1
n2

e
∇aα

a(u)

+
1

2n2
gκλ(u)βκ(u)βλ(u) −

1
2n2

m
Habκ(u)g

ab(u)βκ(u)

+ (terms independent of α, β) + o(n−2),

where
e
∇aα

b = ∂aα
b +

e
Γ b

acα
c .
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We obtain the optimal orthogonal shift.

Theorem

The optimal βκ is given by

βκopt(u) =
1
2

m
H κ

ab(u)g
ab(u).
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Proof.
The risk in Proposition 2 is

E[D{p(y; u), pα,β(y; ûMLE)}]

=
1

2n2
gabα

aαb +
1
n2

e
∇aα

a(u)

+
1

2n2
gκλ

(
βλ − 1

2

m
H λ

abgab

) (
βκ − 1

2

m
H κ

cdgcd

)
− 1

8n2

m
H λ

ab

m
H κ

cdgabgcdgκλ

+ (terms independent of α, β) + o(n−2).

Thus β is optimal when

βκ(u) =
1
2

m
H κ

ab(u)g
ab(u).

□
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Therefore, the orthogonal component of the shift in Theorem 2 is
optimal.

The extended plugin density with η̂π has the optimal shift.

The risk difference between a plugin density pα,0(y; ûMLE)) and a
extended plugin density pα,βopt(y; ûMLE)) with the optimal orthogonal
shift is given by

E[D(p(y; u), pα,0(y; ûMLE))] − E[D(p(y; u), pα,βopt(y; ûMLE))]

=
1

8n2

m
H λ

ab

m
H κ

cdgabgcdgκλ + o(n−2).

Here,
m
H λ

ab

m
H κ

cdgabgcdgκλ is the mixture mean curvature of P
embedded in M at u0.
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The optimal orthogonal obtained by K (1996) is not in the tangent
space of exponential families E.

Thus, the shifted plugin density is not icncluded in E.

Our optimal shift is included in the tangent space of E, and the
shifted plugin density is included in E.

The optimal orthogonal shift of K (1996) is

gab(ûMLE)

2n
∂a∂bp(y; ûMLE) −

m
Γ c

ab(ûMLE)∂cp(y; ûMLE). (4)

Our optimal shift is a projection of (4) onto the tangent space of E
because⟨

gab(ûMLE)

2n
∂a∂bp(y; ûMLE) −

m
Γ c

ab(ûMLE)∂cp(y; ûMLE), ∂λp(y; ûMLE)

⟩
gλκ∂κp(y; ûMLE)

=
gab(ûMLE)

2n
⟨
∂a∂bp(y; ûMLE), ∂λp(y; ûMLE)

⟩
gκλ∂κp(y; ûMLE)

=
gab(ûMLE)

2n

m
Hκab∂κp(y; ûMLE).
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Example (Fisher circle model, continued)
We have gωω = 1 and

m
Γ ωωω = 0.

Thus, the optimal orthogonal shift is

hωω(x; η) =
(
∂ωωηi −

m
Γ ωωω∂ωηi

)
∂ip(x; η)

= p(x; η)(− cosω(x1 − η1) − sinω(x2 − η2))

and the risk improvement by the optimal orthogonal shift is

E[D(p(y;ω), pα,0(y; ω̂MLE))] − E[D(p(y;ω), pα,βopt(y; ω̂MLE))]

=
1

8n2

m
H λ

ab

m
H κ

cdgabgcdgκλ + o(n−2)

=
1

8n2
E[(− cosω(y1 − η1) − sinω(y2 − η2))

2] + o(n−2)

=
1

8n2
+ o(n−2).

The risk improvement by the optimal shift is 3
8n2 + o(n−2).
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If the variance of x1, x2 is σ2, the risk improvement by the extended
plugin p(y; η̂π) and by the Bayesian predictive density are

σ2

8n2
,
σ2 + 2

8n2
,

respectively.

Therefore when σ2 is large, the risk improvement by p(y; η̂π)
becomes relatively large, and the performance of the extended
plugin density is close to that of the Bayesian predictive densityl.

From an information-geometric point of view, the orthogonal shift to
p(y; η̂π) is the projection of the orthogonal shift to the Bayesian
predictive density onto the tangent space of E, and the cosine of
the angle between the two shift vectors is√

σ2

8n2

/√
σ2 + 2

8n2
=

√
σ2

σ2 + 2
.

Thus the angle between those shifts approaches to 0 as σ2 grows.
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Example 2-dimensional spike model

We consider the 2-dimensional spike model, namely 2-dimensional
Gaussian distributions with zero mean vector and unknown
covariance matrix that is expressed as

Σ =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

) (
λ+ 1 0

0 1

) (
cos ϕ sin ϕ
− sin ϕ cos ϕ

)
,

where λ > 0.

The eigenvalues of Σ are λ+ 1 and 1.

The model P = {N(0,Σ) | (λ, ϕ)} is parametrized by (λ, ϕ).

The components of Σ are the coordinate system (ηi) of the
extended statistical model E = {N(0,Σ) | Σ}, thus p(y; Σ̂π) is the
extended plugin density with the posterior mean of η.
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In this model,

gϕϕ =
λ2

λ+ 1
, gλλ =

1
2(λ+ 1)2

, gλϕ = 0,

m
Γϕϕλ = −

λ

(λ+ 1)2
,

m
Γϕλϕ =

λ

λ+ 1
,

m
Γϕϕϕ =

m
Γϕλλ =

m
Γλλλ =

m
Γλλϕ = 0

hold.

The optimal orthogonal shift is

gab

2n
hab(y; η) =

gab

2n

(
∂abηi −

m
Γ c

ab∂cηi

)
∂ip(y; η)

=
λ+ 1
2nλ

{(−y1 sin ϕ+ y2 cos ϕ)2 − 1}p(y; η).
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The risk improvement by the optimal orthogonal shift is

E[D(p(y;ω), pα,0(y; ω̂MLE))] − E[D(p(y;ω), pα,βopt(y; ω̂MLE))]

=
1

8n2
||2nβκopthκ||2 + o(n−2)

=
1

8n2
E

{λ+ 1
λ

((−y1 sin ϕ+ y2 cos ϕ)2 − 1)
}2 + o(n−2)

=
1

4n2

(
λ+ 1
λ

)2

+ o(n−2).

The risk improvement by the optimal shift in P is

1
4n2


(
λ+ 1
λ

)2

+ 5

 + o(n−2).

Therefore, the risk improvement by the extended plugin grows as λ
approaches to zero.

Much less numerical computation is required to otbain extended
plugin densities than to obtain Bayesian predictive desities.
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We consider the choice of priors for the extended plugin with the
Bayes estimator η̂π.
The Laplacian ∆ on a manifold with the Riemannian metric gab is
defined by

∆f := |g|−1/2∂a(|g|1/2gab∂b f),

where f is a smooth function on the model manifold.

A C2 function f is called superharmonic if ∆f ≤ 0.

Theorem
Suppose that π is a smooth positive function on the model manifold
P. The extended plugin density p(y; η̂π) based on π asymptotically
dominates the extended plugin density p(y; η̂πJ) based on the
Jeffreys prior πJ if and only if (π/πJ)

1/2 is a non-constant positive
superharmonic function.
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Proof.
The risk difference is

E[D(p(y; u); p(y; η̂πJ))] − E[D(p(y; u); p(y; η̂π))]

= − 2
n2

(
πJ

π

)1/2
∆

(
π

πJ

)1/2

+ o(n−2).

□
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The superharmonic condition for priors for Bayesian predictive
distributions is obtained in K(2006), and Theorem 4 is its parallel
result for extended plugin distributions of Bayes estimators.

Shrinkage priors are closely related to the superharmonic condition.

For example, the Stein prior π(µ) = ||µ||−(d−2) for the estimation of
mean vector µ of d-dimensional Gaussian distributions is and it
satisfies the superharmonic condition when d > 2.

Consequently, Theorem suggests that shrinkage priors are effective
for constructing an extended plugin of the Bayes estimator.

For the multivariate normal model with known covaraince matrix,
finite sample theories have been developed, see K (2001), George
et al. (2006), George et al. (2012).
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Conclusion

1 The extended plugin density with the posterior mean of the
expectation parameter η of the full exponential family is shown
to be optimal regarding the Bayes risk based on the
Kullback–Leibler divergence if we choose a predictive density
from the full exponential family.

2 Several results are obtained from information-geometric
viewpoints. The results are parallel to those for Bayesian
predictive distributions.

55


	Introduction
	Extended plugin densities
	Information geometry of extended plugin densities
	Information-geometric notions and asymptotic expansions
	Construction of extended plugin densities

	Shrinkage priors

