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A very brief summary of some of Charles Stein’s work 4

I Stein’s two-sample test for a linear hypothesis whose power is
independent of the variance (1945).
Charles showed that by using a two stage sequential procedure
one could give a confidence interval for the mean of a normal
distribution having a prescribed width w > 0 without knowing
the variance.

I Hunt-Stein theorem, unpublished, (1946).
A theorem stating conditions under which there exists a
maximin invariant test in a problem of statistical hypothesis
testing. It was eventually published in Erich Lehmann’s well
known text Testing Statistical Hypotheses (1959).

I The admissibility of Hotelling’s T 2-test (1956).



I Stein’s paradox: inadmissibility of the usual estimator for the
mean of a multivariate normal distribution (1956).

I James-Stein shrinkage estimator of the multivariate normal
normal mean when the dimension d ≥ 3 (1961).

I Stein’s method of probability approximations (1972).

I SURE: Stein’s unbiased risk estimate (1973, 1981).

I plus many more, . . .



Covariance matrix estimation 6

I Proc. 4th Berkeley Symp. (1961):
Charles considered the problem of estimating the covariance
matrix Σ given the sample covariance matrix S/n,
S ∼Wp(Σ, n), with respect to the convex loss function

L(Σ, Σ̂) = tr(Σ−1Σ̂)− log |Σ−1Σ̂| − p.

I This loss function is called Stein’s loss nowadays in honor of
Charles.

I Charles constructed an estimator Σ̂ which has a remarkably
simple expression, is constant risk minimax and dominates any
constant multiple of S (including the sample covariance
matrix S/n).



I The Stein 1961 estimator is

Σ̂ = T ′


1

n+p−1 0
1

n+p−3
. . .

0 1
n+p−2p+1

T

where S = T ′T with T an upper triangular matrix.

I Charles noted though that Σ̂ is still inadmissible and has the
unappealing feature of not being invariant under permutations
of the variables.



The Wishart identity 8

I Since the 1950s, Charles observed that the eigenvalues of the
sample covariance matrix S/n are much more spread out than
the eigenvalues of the population covariance matrix Σ. Thus
an approach to getting an improved estimator of Σ is to
correct for the distortion of the sample eigenvalues.

I In his Rietz Lecture (1975), Charles developed a calculus on
the eigenstructure of S ∼Wp(Σ, n) which culminates in the
Wishart identity: under suitable regularity conditions,

EtrΣ−1g(S) = Etr[nS−1g(S) + 2S∇{g(S)S−1}]

where ∇ = (∇)p×p, ∇ij = (1/2)(1 + δij)∂/∂sij and g maps
the set of p × p positive definite matrices to Rp×p.

I Independently of Charles, Leonard Haff (1978) also proved the
Wishart identity using Stoke’s theorem.



Stein’s 1975 estimator 9

I Charles considered the class of orthogonally invariant
estimators given by

Σ̂ = Rϕ(L)R ′

where
(i) L = diag(l1, l2, . . . , lp), l1 ≥ l2 ≥ . . . ≥ lp, are the
eigenvalues of S ,
(ii) R is an orthogonal matrix such that S = RLR ′,
(iii) ϕ(L) = diag(ϕ1(L), . . . , ϕp(L)) with nonnegative
elements.



I With respect to Stein’s loss, the Stein unbiased risk estimate
(SURE) is computed to be

SURE = 2
∑
i

∑
j 6=i

ϕi (L)/(li − lj) + 2
∑
i

∂ϕi (L)/∂li

+(n − p − 1)
∑
i

ϕi (L)/li −
∑
i

logϕi (L)

+terms without ϕi ’s

=

p∑
i=1

{n − p + 1 + 2
∑
j 6=i

li
li − lj

}ψi − log(ψi )

+2li
∂ψi (L)

∂li
+ terms without ψi ’s,

where ψi = ϕi/li .

I The above first appeared in Charles’ Rietz lecture (1975).



I To minimize SURE with respect to the ψi ’s, Charles ignored
the partial derivatives in SURE to obtain

ψs
i = {(n − p + 1) + 2li

∑
j 6=i

1/(li − lj)}−1, i = 1, . . . , p.

and hence

ϕs
i (L) =

li
n − p + 1 + 2

∑
j 6=i li/(li − lj)

, i = 1, . . . , p.



I Noting that the constraint

ϕs
1(L) ≥ ϕs

2(L) ≥ . . . ≥ ϕs
p(L) ≥ 0

may be violated, Charles proposed an isotonic regression to
modify the ϕs

i ’s. This results in the Stein 1975 covariance
matrix estimator:

Σ̂ST = RϕST (L)R ′,

where ϕST = diag(ϕST
1 , . . . , ϕST

p ).

I The numerical performance of this estimator is excellent.
(i) It reduces the risk drastically when the eigenvalues of Σ
are close together.
(ii) It is almost minimax. It exceeds the minimax risk only
slightly when the population eigenvalues are extremely far
apart.
(iii) Stein’s 1975 estimator has been called by many as the
“gold standard”.



I Charles’ 1975 Rietz lectures were unpublished.

I In 1977, Charles gave a series of lectures in Leningrad. These
lectures included his 1975 work on covariance matrix
estimation. The lectures were to be translated and delivered
in Russian.

I Charles told me when I was a student in the 1980s that the
original English version of his lecture notes was lost and the
Russian translated version was also misplaced.

I A few years back, I was really happy to find out that Charles’
Leningrad lectures were published in 1986 in a Russian journal:
Lectures on the theory of estimation of many parameters. J.
Math. Sci. 34 (1986), 1373-1403.
I am not sure if Charles was aware of this publication as he
did not mention it to me when I was a student.



Covariance matrix estimation: then and now 14

I The covariance matrix estimation problem that Charles was
interested in is decision theoretic in nature. In particular, for
sample size n ≥ p and p not too large; something like
p = 10, 50.

I In the 1990s, due to advancement of the modern computer, a
different kind of asymptotics emerged, namely both n and p
tending to infinity where possibly n < p. This models the
scenario of high dimension p and low sample size n.

I Random matrix theory becomes increasing important in
statistics as a result. In particular, the Stieltjes transform and
the Marčenko-Pastur equation.



Recent spectrum estimators 15

I There has been a lot of work done on spectrum (eigenvalues)
estimation since 2000 using random matrix theory.

I The following are three estimators that are very promising.
These estimators are applicable even when n < p.

I ΛEK
p , El-Karoui (2008)

I ΛLW
p , Ledoit and Wolf (2012, 2015, 2018)

I ΛKV
p , Kong and Valiant (2016)



Simulation study 16

I The following simulation study was done by Jun Wen, a
former student of mine, to compare the performance of the
three estimators with the Stein 1975 spectrum estimator Λ̂ST

p .

I Let Λp denote the population eigenvalues of Σ. Writing Λ̃p as
a generic estimator for Λp, the loss function is

L(Λ̃p,Λp) =
1

p

p∑
i=1

|λ̃i − λi |,

where λ̃i and λi are the ith smallest eigenvalues of Λ̃p and
Λp respectively.



p Λ̂ST
p Λ̂LW

p Λ̂EK
p Λ̂KV

p

10 0.169 0.136 0.121 0.090
(0.007) (0.011) (0.010) (0.008)

20 0.120 0.098 0.082 0.056
(0.005) (0.008) (0.007) (0.005)

50 0.067 0.061 0.043 0.025
(0.002) (0.005) (0.004) (0.003)

500 0.0125 0.0153 0.0068 0.0040
(0.0003) (0.0016) (0.0005) (0.0007)

1000 0.0072 0.0081 0.0042 0.0022
(0.0001) (0.0011) (0.0002) (0.0004)

Table: Average loss when Λp = {1, . . . , 1}, n = 3p and S ∼Wp(Σ, n)



p Λ̂ST
p Λ̂LW

p Λ̂EK
p Λ̂KV

p

10 0.348 0.411 0.412 0.481
(0.009) (0.010) (0.013) (0.012)

20 0.306 0.326 0.305 0.362
(0.005) (0.007) (0.009) (0.009)

50 0.286 0.223 0.251 0.262
(0.003) (0.005) (0.009) (0.009)

500 0.3106 0.0952 0.2212 0.1648
(0.0004) (0.0038) (0.0085) (0.0081)

1000 0.3152 0.0850 0.2171 0.1787
(0.0002) (0.0031) (0.0082) (0.0089)

Table: Average loss when λi equals the (i − 0.5)/pth theoretical quantile
of 1 + 10× Beta(1, 10), 1 ≤ i ≤ p, n = 3p and S ∼Wp(Σ, n)



p Λ̂ST
p Λ̂LW

p Λ̂EK
p Λ̂KV

p

10 1.18 1.27 1.30 1.66
(0.03) (0.04) (0.03) (0.04)

20 1.93 1.79 2.19 2.79
(0.03) (0.04) (0.04) (0.12)

50 4.47 3.07 5.06 6.14
(0.03) (0.06) (0.10) (0.50)

500 41.80 17.78 54.83 78.42
(0.05) (0.33) (0.98) (9.12)

1000 83.57 28.42 111.72 331.78
(0.04) (0.80) (1.71) (21.90)

Table: Average loss when Λp = {1, 2, . . . , p}, n = 3p and S ∼Wp(Σ, n)



Supersymmetry 20

I In particle physics, supersymmetry (SUSY) is a theory that
proposes a relationship between two basic classes of
elementary particles: bosons, which have an integer-valued
spin, and fermions, which have a half-integer spin.

I There is no evidence at this time to show whether or not the
theory of supersymmetry is physically correct.

I The mathematics of supersymmetry uses Grassmann
anticommuting variables together with the usual mathematics
(in particular complex analysis). This type of mathematics is
called supermathematics (or superanalysis).



Supermathematics monographs 21

Supermathematics is well developed in the physics literature. Many
books have been written on it. Some of these include

I Berezin, F. A. (1987). Introduction to Superanalysis. D.
Reidel Publishing Company, Dordrecht.

I de Witt, B. S. (1992). Supermanifolds, 2nd edition.
Cambridge Univ. Press, New York.

I Efetov, K. (1997). Supersymmetry in Disorder and Chaos.
Cambridge Univ. Press, Cambridge.

I Khrennikov, A. (1997). Superanalysis. Kluwer Academic
Pub., Dordrecht.

I Wegner, F. (2016). Supermathematics and its Applications
in Statistical Physics: Grassmann Variables and the Method of
Supersymmetry. Springer, Heidelberg.



I While the supersymmetry method is well known in physics, it
appears that this method has little impact on statistics at this
time.

I The supersymmetry method seems to have a
dimension-reduction property for evaluating certain high
dimensional integrals.

I As motivation, I shall now proceed directly to an example.



Example 23

I Let S be a p × p sample covariance matrix such that nS has
the Wishart distribution Wp(Σ, n) where n ≥ p and Σ is a
p × p population covariance matrix.

I The Stieltjes transform of S is defined to be

m(z) =
1

p
tr{(S − zIp)−1}

=
1

p

p∑
i=1

1

li − z
, ∀z ∈ C\[0,∞),

where Ip denotes the p × p identity matrix and
l1 ≥ l2 ≥ . . . ≥ lp are the eigenvalues of S .



I To calculate Em(z), classical multivariate normal theory, cf.
Alan T. James (Ann. Math. Statist., 1964) gives the
expression

Em(z) =

∫
l1>...>lp

m(z)(
n

2
)np/2 πp

2/2|Σ|−n/2

Γp(n/2)Γp(p/2)

×
p∏

i=1

l
(n−p−1)/2
i

∏
i<j

(li − lj)

×
∫
O(p)

etr(−nΣ−1HLH′/2)(dH)(dL). (1)

Here L = diag(l1, . . . , lp), O(p) denotes the group of p × p
orthogonal matrices and (dH) is its Haar measure.
Γp(.) is the multivariate Gamma function given by

Γp(a) = πp(p−1)/4
p∏

i=1

Γ(a− i − 1

2
), ∀Re(a) >

p − 1

2
.



I No simple expression is known for the integral∫
O(p)

etr(−nΣ−1HLH′/2)(dH).

The above integral is sometimes called the
Harish-Chandra-Itzykson-Zuber type integral.

I Harish-Chandra (Amer. J. Math., 1958), obtained relatively
simple closed form expressions of the above integral over a
number of groups, such as the unitary group, but not the
orthogonal group.



I It is also well known that, cf. R. J. Muirhead (1982), Aspects
of Multivariate Statistical Theory,∫
O(p)

etr(−nΣ−1HLH′/2)(dH) = 0F0(−nL/2,Σ−1)

=
∞∑
k=0

∑
κ

Cκ(−nL/2)Cκ(Σ−1)

k!Cκ(Ip)
,

where
∑

κ denotes summation over all partitions
κ = (k1, . . . , kp), k1 ≥ . . . ≥ kp ≥ 0, of k , Cκ(X ) is the zonal
polynomial of X corresponding to κ and 0F0(−nL/2,Σ−1) is a
hypergeometric function with matrix arguments.

I Unfortunately, a resummation of the above series is a well
known difficult problem and, as far as we know, no good
algorithm currently exists.



Suppose n ≥ 5 and p ≥ 1. Then using the supersymmetry method,
it can be proved that

Em(z) = − 1

8p

∫ ∞
0

∫ ∞
0

|ra − rb|(rarb)(n−3)/2∏p
i=1

√
(nz − raλi )(nz − rbλi )

e−(ra+rb)/2

×
n∧(p−1)∑

k=0

(−1)k

(n − k)!
(p − k)np−kzp−k−1

{
n(n − 1)ek(Λ)

+(n − 1)

p∑
i=1

λ2
i ek−1(Λ[−i ])

( ra
nz − raλi

+
rb

nz − rbλi

)
+

∑
j ,l :1≤j 6=l≤p

rarbλ
2
j λ

2
l ek−2(Λ[−j ,−l ])

(nz − raλj)(nz − rbλl)

}
dradrb, (2)

where Λ = {λ1, . . . , λp} are the eigenvalues of Σ where
λ1 ≥ . . . ≥ λp ≥ 0.
Λ[−i ] = {λ1, . . . , λp}\{λi} and Λ[−j ,−l ] = {λ1, . . . , λp}\{λj , λl}.
ek(.)’s are elementary symmetric polynomials.



Symmetric polynomial 29

I For any finite set Θ = {θ1, θ2, . . . , θm}, m ∈ Z+, we define
the elementary symmetric polynomials in Θ to be

e0(Θ) = 1,

ek(Θ) =
∑

1≤j1<j2<...<jk≤m
θj1 . . . θjk , ∀k = 1, . . . ,m,

ek(Θ) = 0, ∀k ∈ Z\{0, . . . ,m},

and e0(∅) = 1, ek(∅) = 0 for k 6= 0 where ∅ denotes the
empty set.



I The expressions of Em(z) given by equations (1) and (2) are
rather different.

I An important difference is that the dimension of the integral
in (1) is of order O(p2) while the dimension of the integral in
(2) is just 2.

I This indicates that the supersymmetry method possesses a
dimension reduction property.



Brief survey on Grassmann anticommuting variables 31

I Let q ∈ Z+. Anticommuting variables χi , i = 1, . . . , q, are
defined formally as mathematical objects obeying the
following anticommutative rules:

χiχj = −χjχi , ∀1 ≤ i , j ≤ q.

Complex numbers commute with anticommuting variables,
i.e. zχi = χiz for all z ∈ C and i = 1, . . . , q. Consequently,
χ2
i = 0 for all i and any function of χ1, . . . , χq is a finite

polynomial of the form∑
θ1,...,θq∈{0,1}

zθ1,...,θqχ
θ1
1 . . . χ

θq
q ,

where zθ1,...,θq ∈ C are constants.



I Like complex numbers, let χ∗i be the complex conjugate of χi ,
i = 1, . . . , q. χ∗i anticommutes with each other and with
χ1, . . . , χq. Also we have (χ1 . . . χq)∗ = χ∗1 . . . χ

∗
q and

(χ∗i )∗ = −χi .

I Let k , k1, k2 be positive integers such that k = k1 + k2. A
k × k supermatrix F is defined via block construction

F =

(
A B
C D

)
,

where A,D are k1 × k1, k2 × k2 matrices, respectively, whose
entries are commuting elements, and B,C are
k1 × k2, k2 × k1 matrices, respectively, whose entries are
anticommuting elements.



I The k1 × k1 matrix A is called the bosonic part of supermatrix
F .

I The k2 × k2 matrix D is called the fermionic part of F .

I The supertrace of F is defined as

str(F) = tr(A)− tr(D).

I The superdeterminant of F is defined as
sdet(F) = |A−BD−1C ||D|−1 if D−1 exists.

I Also sdet−1(F) = |A|−1|D − CA−1B| if A−1 exists.



I Integration over anticommuting variables is defined formally
as: for any anticommuting variable χ,

∫
dχ =

∫
dχ∗ = 0 and∫

χdχ =
∫
χ∗dχ∗ = c , a constant. The actual value of c can

be arbitrary. Here we take c = 1/
√

2π.

I Multiple integrals are carried out iteratively. In particular, we
have∫ ∫

exp(zχ∗χ)dχdχ∗ =

∫ ∫
(1 + zχ∗χ)dχdχ∗ = z , (3)

for any constant z ∈ C since (χ∗χ)k = 0 for all k ≥ 2.

I Interestingly, equation (3) lies at the heart of the way the
supersymmetry method is used.



Sketch of the proof of (2) 20

Let X1, . . . ,Xn be an i.i.d. sequence of random vectors from
Np(0,Σ). Define the p × n data matrix Y = (X1, . . . ,Xn). Then
S = YY ′/n.
Following Recher, et al. (Phys. Rev. Lett., 2010), we begin with
the generating function

Z (z0, z1) = E
|z1Ip − YY ′|
|z0Ip − YY ′|

, ∀z0, z1 ∈ C, Im(z0) > 0.

By invariance, we shall without loss of generality assume that
Σ = Λ = diag(λ1, . . . , λp) where λ1 ≥ . . . ≥ λp. Then

Z(z0, z1) = E
p∏

i=1

z1 − nli
z0 − nli

,

where l1, . . . , lp are the eigenvalues of S , the sample covariance
matrix.



Now differentiating with respect to z1 and then setting
z1 = z0 = z , we obtain

∂

∂z1
Z (z , z1)|z1=z = E

p∑
j=1

1

z − nlj

= E
1

n

p∑
j=1

(
z

n
− lj)

−1 = −p

n
Emp(

z

n
).

I Thus to compute Em(z), it suffices to compute the
generating function Z (z0, z1).

From the joint distribution of the elements of Y , we have

Z (z0, z1)

=
1

(2π)pn/2|Λ|n/2

∫
Rnp

|z1Ip − YY ′|
|z0Ip − YY ′|

e−tr(Y
′Λ−1Y )d [Y ], (4)

where Y = (yij)1≤i≤p,1≤j≤n and d [Y ] =
∏p

i=1

∏n
j=1 dyij .



Superintegration 22

I In what follows, the motivation is to embed Rnp in a larger
superspace (with Grassmann anticommuting variables) in
order to facilitate the integration for Z (z0, z1).

I A crude analogy is the following: In many situations, in order
to evaluate an integral on the real line R, a common strategy
is to embed R in the complex plane C and then apply contour
integration techniques.

I For j = 1, . . . , p, let uj , vj ∈ R and ζ, ζ∗ be anticommuting
variables. Define the 4× p matrix A by

A =


u1 u2 . . . up
v1 v2 . . . vp
ζ1 ζ2 . . . ζp
−ζ∗1 −ζ∗2 . . . −ζ∗p

 .



I The denominator of the ratio of determinants in equation (4)
can be expressed as a Gaussian integral over a vector
consisting of ordinary variables.
Writing u = (u1, . . . , up)′ and v = (v1, . . . , vp)′, we have∫

{
p∏

j=1

dujvj}e−iu
′(z0Ip−YY ′)u/2e−iv

′(z0Ip−YY ′)v/2

=
i−p(2π)p

|z0Ip − YY ′|
. (5)



I Using (3), the determinant in the numerator of (4) can be
expressed as a Gaussian integral over a vector consisting of
Grassmann anticommuting variables.
Writing ζ = (ζ1, . . . , ζp)′, ζ∗ = (ζ∗1 , . . . , ζ

∗
p)′ and ζ† be the

conjugate transpose of ζ, we have∫ p∏
j=1

dζ∗j ζj exp
{
− i

2
{ζ†(z1Ip − YY ′)ζ − ζ ′(z1Ip − YY ′)ζ∗}

}
= ip(2π)−p|z1Ip − YY ′|. (6)



I Writing D = diag(z0, z0, z1, z1) and A† to be the conjugate
transpose of A, it follows from (5) and (6) that

|z1Ip − YY ′|
|z0Ip − YY ′|

=

∫
d [A] exp

( i

2
str(DA†A− A†YY ′A)

)
, (7)

where d [A] = (2π)−p
∏p

j=1 dujdvjdζ
∗
j dζj .

I Since the imaginary part of z0 is greater than zero, the
convergence of the Gaussian integral is ensured.



I Plugging (7) into (4), we obtain

Z (z0, z1)

=
1

(2π)np/2|Λ|n/2

∫
d [A] exp

( i

2
str(DA†A)

)
×
∫

d [Y ] exp
(
− 1

2
tr{Y ′(Λ−1 + iAA†)Y }

)
=

∫
d [A] exp

( i

2
str(DA†A)

)
|Ip + iAA†Λ|−n/2. (8)

The last equality is obtained by evaluating the Gaussian
integral over Y .

I Y has been integrated out. The next step is to integrate out
the 4× p matrix A whose last 2 rows comsist of Grassmann
variables.



I Using the fact that tr(A†AΛ) = str(AΛA†), we obtain

|Ip + iA†AΛ| = sdet(I4 + iAΛA†).

I This equality reduces the matrix dimensionality from p × p to
a 4× 4 supermatrix.

I It follows from (8) that

Z (z0, z1) =

∫
d [A]e istr(DA

†A)/2sdet−n/2(I4 + iAΛA†), (9)

where d [A] = (2π)−p
∏p

j=1 dujdvjdζ
∗
j dζj .

I For brevity, the domain of the above integral is omitted and is
taken to be over the region in which the variables are defined.



Super-Fourier representation 28

I The next step is also called generalized Hubbard-Stratonovich
transformation in the physics literature.

I We shall now express the integral in (9) in terms of Gaussian
integrals to facilitate the integration.

I Motivated by the delta function representation:

δ(σ − A†ΛA) ∼
∫

d [ρ]e−istr{ρ(σ−A†ΛA)},

it can be shown that

sdet−n/2(I4 + iAΛA†) = lim
ε→0+

∫
d [ρ]`ε(ρ)e−istr(AΛA†ρ)/2,

where

`ε(ρ) =

∫
d [σ]sdet−n/2(I4 + iσ)e{istr(σρ)−4εσ2

1}/2. (10)

ρ is a 4× 4 supermatrix defined by

ρ =

(
ρ0 ω
ω† iρ1I2

)
where ρ0 is a 2× 2 real symmetric matrix given by

ρ0 =

(
ρaa ρab
ρab ρbb

)
,

and ρ1 ∈ R.



ω is a 2× 2 matrix with anticommuting elements given by

ω =

(
ψ ψ∗

φ φ∗

)
.

The differentials are defined as

d [ρ] = (4π)−2dρaadρabdρbbdρ1dψdψ
∗dφdφ∗.

The 4× 4 supermatrix σ is similarly defined as ρ.



Concluding the proof of (2) 30

I Finally we obtain

Z (z0, z1) =

∫
d [A] lim

ε→0+

∫
d [ρ]`ε(ρ)e−istr(AΛA†ρ)/2e istr(DAA

†)/2

= lim
ε→0+

∫
d [ρ]`ε(ρ)

∫
d [A]e istr(DAA

†−AΛA†ρ)/2

= lim
ε→0+

∫
d [ρ]`ε(ρ)

p∏
j=1

sdet−1/2(D − ρλj).

I Since d [ρ] = (4π)−2dρaadρabdρbbdρ1dψdψ
∗dφdφ∗, the

domain of the above integral does not depend on p.

I What remains to be done is to integrate the last integral
explicitly to obtain the an exact expression of Em(z) in terms
of a double integral, i.e. (2). This can be done by “brute
force”, if necessary.



Other examples 31

In conclusion, we list some other results on random matrix theory
proved via the supersymmetry method.

I Recher, Kieburg, Guhr and Zirnbauer (Phys. Rev. Lett.,
2010) expressed the expectation of the density of the
empirical spectral distribution of a real Wishart matrix in term
of a double integral.

I Wirtz and Guhr (Phys. Rev. Lett., 2013) obtained a relatively
simple exact expression for the expected distribution of the
smallest eigenvalue of a real correlated Wishart matrix.

I The real Wishart distribution, though most relevant to
statistics, is one of the more technically difficult class of
matrices to work with.

I Similar, though simpler, results has been obtained in the
literature for the complex Wishart distribution.
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