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Introduction

® The natural estimator of the normal mean, the sample mean,
is its UMVUE, the MLE, and also the best equivariant
estimator under translations of the sample space.

® This estimator is minimax under a very general class of losses
in any arbitrary dimension.

¢ Blyth (1951) proved the admissibility of the sample mean in
the normal case for a very general class of losses, including
but not limited to the squared error loss, in one dimension.

e Stein (1956) made the surprising discovery that although the
sample mean is an admissible estimator of the normal mean in
one or two dimensions under squared error loss, it is not so in
three or higher dimensions under the same loss.
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® Baranchik (1970), under squared error loss, provided a very
general class of minimax estimators including the James-Stein
estimator which dominates the sample mean in three or higher
dimensions.

® A very important subclass of the Baranchik class of
estimators, namely proper Bayes minimax estimators under
certain hierarchical priors, was found by Strawderman (1971).

® Efron and Morris, in a series of articles, provided an empirical
Bayes (EB) interpretation of the James-Stein estimator.

® Extending their ideas further, the entire Baranchik class of
estimators, including those of Strawderman, can be given
simple EB interpretation.
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® James-Stein estimators or their variants which dominate the
sample mean continue to do so when it comes to prediction of
a future observation form the normal distribution with the
same mean under squared error loss.

® This is a consequence of a more general result which
establishes duality between estimation and prediction under
squared error loss.

® Robert (2001) points out that often it is natural to use losses
which compare directly the densities f(-|x) and f(-|a), where
0 is the true parameter.

® Robert refers to such losses as "intrinsic losses” .
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® The two most well-used divergence measures between two
densities are the Kullback-Leibler (KL) or the entropy distance
and the Bhattacharyya-Hellinger (BH) distance (Hellinger,
1909; Bhattacharyya, 1943).

® However, if X = (X1,...,X,)7 ~ N(0, vl },), the KL distance
between f(:|0) and f(-|a) is

£ |loe i1 | ~ 51110~

® Hence, point estimation based on the KL loss is tantamount
to squared error loss for known v.
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e KL and BH losses are special cases of a more general
divergence loss considered in other contexts (Renyi, 1961,
Amari, 1982; Cressie and Read, 1984).

® This loss is given by
1— [ f1=P(x|0)fP(x|a)dx

Ls(0,a) =
#(%:2) 31— 5)
® The above loss is to be interpreted as its limit when 8 — 0 or
68— 1.
: fg(X)
(] I|mBH0L/g(0,a) Eg[log X)]
* limg_1L5(0, a) = Eaflog’@ g]

Li(0.2) = 4L [ F2(xi0)r 2 (xla)d]
2/[f1/2(x|9) — f1/2(x|a)]?]dx.



¢ Recently Komaki (2001) and George et. al (2006) have
considered improved minimax predictive densities under the
KL loss.

® They have developed various shrinkage versions of predictive
densities which dominate under this loss he Bayes predictive
density with the uniform prior for a future observation
conditionally independent of the sampled observations.

e George et. al (2006) have also explored various iinteresting
duality results between multivariate estimation and prediction
in the normal problem under this loss.

Malay Ghosh Divergence Loss



® In contrast, Ghosh, Mergel and Datta (2006) considered the
general divergence loss, established duality between estimation
and prediction, and showed that the general Baranchik class
of estimators continues to dominate the sample mean under
this general divergence loss.

® Moreover,the EB interpretation of the Baranchik class of
estimators continues to hold under this loss.

® The key feature of this talk is to explore this duality between
estimation and prediction under the general divergence loss.
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Squared Error Loss

® Let Xq,---,Xp|b1,...,0, be independent N(6;, vy),
i=1,...,p, vx >0 known.

® We write X = (X1,...,X,)7 and 0 = (61,...,6,)7.

® For p > 3, under the loss L(0,a) = ||a — 6]|?,

JS _ o (p—2)vx

dominates X.
® Let S = ||X||?/vy. Baranchik (1970) showed that the general
class of estimators 684(X) = [1 — @]X dominates X if
(i) 7(S) is non-decreasing in S and (ii) 0 < 7(S) < 2(p — 2).
® If 7(S) =c¢, 0 < c <2(p—2), the optimal ¢ = p — 2, which
gives the James-Stein estimator.
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® The general Baranchik class of estimators can be given an EB
interpretation.

® X|6 ~N(0,vilp) and 6 ~ N(0, Av,l,), vx known, A
unknown.
® The Bayes estimator of € under squared error loss is
(1 - B)X, where B = (1+ A)~ .
® To estimate B, note that marginally X ~ N(0, B~1v,1,).
® S =||X]||?/vx is complete sufficient for B.

e A general class of EB estimators of B is of the form

A

(1-B(S))X.

® |n particular, since marginally, S ~ B_lxg, the UMVUE of B
is (p—2)/S.

® The resulting EB estimator of B is (p — 2)/S leading to the

James-Stein estimator (1 — pT_2)X.
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An important class of Bayes estimators dominating X was
provided by Stein (1981).

Consider a general prior m(8) of 6.

Let m-(X) = [ ¢(X|(0, vil,)7(6)d6 be finite for all X.
Then the Bayes estimator of 0 is

Ix(X) = X + v v logm,(X),

where 17 denotes the gradient vector.

1/2

Stein showed that if either m,; or my;’'~ is superharmonic, i.e.
it has a negative Laplacian, then 6,(X) dominates X.

In particular, Stein proposed the harmonic prior
n(6) =|6]|~(P~2.
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® Duality between dominance under squared error loss over the
estimator X of € and the predictor X of Y where X L Y10
and E(X)=E(Y)=286.

® Suppose an estimator e(X) of 8 dominates X under squared

error loss. Then

Eglle(X) - YI?

<

Egll{e(X)— 0} —{Y — 6}
Eglle(X) — 0|* + Egl|Y — 6]
Egl|X — 0|1> + EgllY — 6|
Egl|X — Y|

® Conversely, suppose
Eglle(X) — Y] < EglIX — Y2,

® Then subtracting Eg||Y — 8| from both sides,
Eglle(X) — 0l[* < EglIX — 6] ]*.
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Divergence Loss

® Let X L Y|O with corresponding pdf's p(x|@) and p(y|0).

® Recall the divergence loss L3(0, a) = Cd fliﬁggﬂg)ﬁ(x‘a)dx.

® Let m(0|x) denote the posterior pdf of 8 given x.

® lemma 1. Under the divergence loss and the prior 7, the
Bayes predictive density of Y is
mo(ylx) = KAy, x)/ [ k=P (y, x)dy, where
k(y,x) = [ p*=P(y|0)m(0]x)d6.

® |n the special case when 8 — 0, namely the KL loss,
mke(y|x) = [ p(y|0)p(0]x)d8, the usual predictive pdf
(Atchison, 1975).
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A useful result.

Suppose Z; and Z; are two independent p-component
random vectors with pdf’s f; and f, and distribution functions
F1 and F;, respectively.

Let h and H denote respectively the pdf and distribution
function of Z1 — Z5.
Then h(0) = [ fi(2)fh(z)dz.
The proof follows by first oberving

fFl +Z f2 )dZ.
leFerent|at|ng both sides with respect to x, one gets

= [ fi(x + z)f(z)dz, which leads to the value of h(0).

In particular,
J ¢(zlpg, Z1)d(2| 12, Zo)dz = ¢(0|pty — pp, X1 + ).
Also, Ls(6,a) = exp[—225) |10 — a||?].

2vy
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® Consider once again Y L X|6 with Y ~ N(0,v,/,) and
X ~ N(0, vlp), v(> 0) and v, (> 0) are known.

® 0 has the N(u, Alp) prior. (1 — B)X + Bu, where
B = vy/(vx + A).

® The goal here is to maximize
S exp{ = 25210 al2 }6(6](1— B)X + B, vi(1— B)1,)d0

2vy
with respect to a.

_ _lla--B)X-Bp|? ]
2v{p71(1-B)" 1 +1-B} |

¢ This is maximized when a = (1 — B)X + Bp.
® Thus the Bayes estimator of 8 is (1 — B)X + Bu, where
B = vi/(vx + A), same as squared error loss.

® This integral is proportional to exp[
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® For prediction, writing (1 — B)X + Bu = 9B(X)v

By (VX0 o | / B (y10, v, 1,)6(8105(X), vx(1 — B)1,)d6]
x (6|1~ B)X + By, w1~ B)(1 — ) + v )7,

e If7(0)=1, B—0.

® Then the Bayes estimator of 6 is X.

® The Bayes predictive density of Y is
(x| X, (vx(1 = B) + w)lp).

® We denote by g the plug-in predictive density
Poi(y|X) = ¢(y|X, vyl p).
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® For estimating the normal mean, the Bayes estimator of 6
under the prior m(0) = 1 is X for the general divergence loss
as well as squared error loss.

e Similarly, under the divergence loss, the Bayes predictive
density of ¢(y|0, v, 1,) under the prior 7(0) =1 is
Puly|X) = (x| X, (vx + vy)l ).

* ¢(y|X, (v« + vy)I,) has smaller risk than that of the plug-in
predictor ¢(y|X, v, 1p).

® X is a minimax estimator of 6 under the general divergence
loss in any arbitrary dimension.

e Similarly, pu(y|X) = o(¥| X, (vx + vy )l ) is a minimax
predictor of ¢(y|0, v,I,) under the general divergence loss in
any arbitrary dimension.

® While Stein type shrinkage estimators are targeted to
dominate X, the goal is to improve on py(y|X) via shrinkage.

® This is what one wants to accomplish under the general
divergence loss.
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Inadmissibility Results

® py(y|X) is an admissible predictor of ¢(y|0,1,) for p = 1.
® |ts admissibility is an open question for p = 2. (?)
® py(y|X) is an inadmissible predictor of p(y|@, v, ;) for p > 3.

® The duality between estimation and prediction can be seen via
the Baranchik class of estimators and predictors.

® Let S = X|?/vx.

® The Baranchik class of estimators for 8 is given by
a(X)={1-7(5)/S}X.

® Analogously, the Baranchik class of predictors for ¢(y|6, v, 1)
is given by ¢(y[67(X), (1 = B)vx + vy)I ).
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® For the estimation problem,
L(8,87(X)) = sty [1 — em { = 25 2)167(X) — 0P}

® For the predlctlon problem,

L(o(y10,15),¢ (y167(X), {(1 = B)vx + v )Ip})

_ 1 [1_ 0 it (C) 77 Y BL5) 10" (X)— 9||2}
1-5) {(1-B)2vstv, 1P/ {(A-BYvstw }

® Theorem. Let p > 3. Assume (i) 0 < 7(t) < 2(p — 2) and (ii)
7(t) is a differentiable nondecreasing function of t. Then
(a) R(6,07(X)) < R(6, X) and
(b) R(¢(y|0, Vylp)7 ¢ (y[67(X), (1 = B)vx + Vy)’p))

< R(¢(Y\97 VY’P)7¢(y|X7((1 _B)Vx+ VY)IP))'
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® The above result can immediately be extended to shrinkage
towards an arbitrary regression surface.

® Suppose now that X |0 ~ N (6, vl,) .

® 0~ N(Kp3,Al,) where K is a known p x r matrix of rank
r(< p) and B is r x 1 regression coefficient.

* Define P = K(K"K)"'KT and R* = || X — PX||?/vy.

® Let p>r+3. ssume (i) 0 < 7(t) < 2(p —2) and (ii) 7(t) is
a differentiable nondecreasing function of t. Then

X —{7(R*)/R*}(X — P X) dominates X under the general
divergence loss.

® A similar dominance result holds for prediction of
o(y|0, Vylp)-
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® Consider now the case X ~ N(0, viI,), where both 8 and v,
are unknown.

S~ mﬁzxﬁ, independent of X.

® This is the typical balanced one way ANOVA model where X
is the vector of treatment means and S is a multiple of the
error mean square.

® The goal continues to be estimation of @ under the general

. 1-exp[-25-2)0-a)?]
divergence loss L(0,a) = EIe=5) ,0< B <1,

® Noting that || X — 8> /vy ~ Xf,, the risk

_ _B)]—P/2
R(0, X) = LGP
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¢ Following Baranchik (1970) and Efron and Morris (1976), we
consider the rival set of estimators

~ (1. UX/s)
3(x) = (1 - ) x.

1—exp [~ 252 16(X)-0)?]

e Consider the loss L(0,d8(X)) = 5(1 5
® Theorem. Let p > 3. Assume
(i) 0 < 7(t) <2(p—2) forall t >0;
(ii) 7(t) is a differentiable nondecreasing function of t for
t>0.

Then R(0,0(X)) < R(6, X) for all 8 € RP.
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® Finally, let Zy,...,2Z, (n > 2) be iid Ny(0, X), where both 6
and X are unknown.

eletX=ZandS=(n-1)"1Y" (Z;-2)(Z;-2)".

® The divergence loss is now given by

1— fd)l_ﬁ(x]@, ¥ /n)¢®(x|a, X/n)dx

L(B,a) =

B(1—5)
l-eop [—M(a —0)TsY(a—0)
a B(1—p)

® Since n(X — 0)TZH(X - 0) ~ x2,
_ [1-{148(1-8)} "))
R(6, X) = B SG=gr

Malay Ghosh Divergence Loss



® Consider now the general class of estimators

(nX'S'X
6(X,S) = |1 - i | X
® Consider the loss

L(6,6(X,S)) =
® Theorem. Let p > 3. Assume

() 0 < 7(t) < 2(p — 2)(n — 1)/(n— p +2);

(ii) 7(t) is non-decreasing differentiable function of t.

Then R(6,8(X,S)) < R(6, X).

1-exp PM(6(X,S)70)TZ‘1(6(X,S)70)]
B(1-8) ’

Malay Ghosh Divergence Loss



Stein's Harmonic Prior

® Stein's harmonic prior yielded Bayes estimators of 6
dominating X when X ~ N(6, 1,,).

® To my knowledge, it was Komaki (2001) who first developed
Stein type predictors for the density of a future observation
under the normal set up.

® He showed in particular the dominance of the predictive
density developed under Stein's (1981) harmonic prior over
the classical best equivariant predictive density estimator as
developed by Atchison (1975) under the Kullback-Leibler (KL)
loss.

® George, Liang and Xu (2006) followed this work and exhibited
this dominance under general superharmonic priors.

® They also demonstrated a very nice duality between
estimation and prediction under superharmonic priors.
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® Some details of the work of George et al. (2006).

® Let Y L X|0 where Y ~ N(6,v,1,) and X ~ N(0, v, I}).

e Let pr(y|X)) denote the posterior predictive pdf of Y under
an arbitrary prior .

® Let m.(-) denote a generic notation for marginals.

o Let W= (vo'X+v, 1Y) /(v + v, 1)

e Let p,(y|x) is the posterior predictive pdf of Y given X under
the uniform prior 7(0); v, = (vo! + vy_l)_l.
® Result 1 ( The basic identity)
Pr(y[x) = [mx(w; viv)/mr(x; vi)lu(y |x)
® Result 2. If the prior m(0) is super/harmonic, then my is
2

. . 1 . .
superharmonic) or equivalently my'“ is superharmonic.
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® Result 3.

RKL(9 Pu(Y[X)) — Rk (8, b= (Y| X)) =

13 55 { Eg I X = 612 = [15:(X) — 612} dv,

where 0.(X) is the Bayes estimator of 8 under the prior 7(8)
relative to the quadratic loss.

® Thus the dominance property of the Bayes point estimator of
0 under squared error loss is inherited by the Bayes predictive
densities under KL loss.

e Stein (1981) showed that if 7(0) is superharmonic, then
d7(X) dominates X under squared error loss.

® By Result 3, the same dominance holds under KL loss.
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A Two Sample Problem

® Simultaneous estimation of two population means when one
suspects the two means to be nearly equal.

® Rather than estimating the two means separately, it may be
more profoitable to shrink each mean towards a pooled mean.

® An EB approach handles this in an adaptive way rather than a
preliminary test approach.

¢ Ghosh and Sinha (1988) proposed hierarchical empirical Bayes
estimators dominating individual sample means under squared
error loss.

® The same phenomenon holds under a general divergence loss.
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® X1, X2 and S are mutually independent random variables
with X; ~ Np(p;,02V;), i =1,2; S/0? ~ X2

® Notation: f(x1,X2|py, ttp, 02) joint pdf of X1, X5 under the
above model.

® Divergence loss : Lg(py, pto; @1, @2) =
1—f fliB(XhXQ‘IJ/F[JQ,OQ)fﬁ(Xl,XQ‘al,az7dz)dX1X2

B(1-8) ’
® g priors: p; ~ Np(v,72V;), i = 1.2 independently

® v ~ uniform(RP)
® The HB estimators of the u; are given by
a8 = X; — B(x; — ), where B = 02/(0? 4+ 72) and

1

D= (VI Vo) H(vity vty
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2

First estimate B for known o
Marginally X1 — X2 ~ N,(0, (02/B)(V1 + V2).
(X1 — X2)T (V1 + V3) Y(X1 — X3)/0? ~ B~y p
E(1/x2) = (p—2)"  for p > 3.

° é (p— 2)U
(X1=X2)T(V1+ Vo)1 (X1-X2)"

Estimate o2 by 62 = S/(n + 2).
° F= (Xl — X2)T(V1 + V2)_1(X1 — X2)/62.
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e Consider the shrinkage estimator f1;(¢) = X; — @(X; - D),
i=1,2.

® Theorem. (f1;(¢), fto(¢)) dominates (X1, X2) under the
general divergence loss for p > 3 if
(a) 0 < ¢(t) <2(p—2) forall t >0;
(b) ¢(t) is a differentiable nondecreasing function of t for
t > 0.

® The basic technique for proving this result is to introduce
W= (Vi + Vo) H(VIX: + V31X,) and exploit the
independence of W with Z = X; — X».
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Final Remarks

® Stein's 1956 paper was a major breakthrough in statistics, and
its impact is felt even today.

® Stein’s original results and many of their variants are
continuously used both in the theory and application of
statistics.

® The Stein phenomenon for prediction is of more recent origin.

® The present talk has focused on the Stein phenomenon for
both estimation and prediction, and has pointed out the
duality between the two in several contexts.
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