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Stein’s 1974 paper

@ “Estimation of the mean of a multivariate normal distribution”

1. Introduction

2. Computation of the risk of an arbitrary estimate of the mean
3. The spherically symmetric case

4. The risk of an estimate of a matrix of means

5. Choice of an estimate in the p X p case

6. Directions in which this work ought to be extended
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Abstract
Efron—Morris estimator (Efron and Morris, 1972)
Mem(X) = X (I, = (p— g - HXTX)™)

minimax estimator of a normal mean matrix
natural extension of the James—Stein estimator

3
Singular value shrinkage prior (M. and Komaki, Biometrika 2015)

nsys(M) = det(M™ M)~ (P-a=D/2

superharmonic (Arrgys < 0), natural generalization of the Stein prior
works well for low-rank matrices — reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)
estimate unobserved entries of a matrix by exploting low-rankness
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Efron—Morris estimator
(Efron and Morris, 1972)
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Note: singular values of matrices

@ Singular value decomposition of p x g matrix M (p > q)
M =UAVT

U:pxgq, V:igxgqg, UU=V'V=I,
A = diag(o (M), . ..,0,(M))

@ oy(M)>--->0,M)>0: singular values of M
@ rank(M) = #{i | o;(M) > 0}
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Estimation of normal mean matrix
Xij~NWM;j,1) (i=1,-,p;j=1,--,q)

@ estimate M based on X under Frobenius loss ||M — M||§
@ Efron—Morris estimator (= James—Stein estimator when g = 1)

Men(X) = X (I, - (p— g - DX"X)™")

Theorem (Efron and Morris, 1972)
When p > ¢ + 2, Mgy is minimax and dominates My g(X) = X. J

@ Stein (1974) noticed that it shrinks the singular values of the
observation to zero.

N —qg-1
oi(Mgm) = (1 - pO_L) oi(X)
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Numerical results

@ Risk functions for p =5, g = 3, 0y =20, 03 = 0 (rank 2)
@ black: MLE, blue: JS, red: EM
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@ Mgy works well when o, is small, even if o) is large.
> Mjs works well when [|M||% = o3 + 03 + o5 is small.
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Numerical results

@ Risk functions for p =5, ¢ =3, 0, =03 =0 (rank 1)
@ black: MLE, blue: JS, red: EM
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@ Mgy has constant risk reduction as longas o, =03 =0,
because it shrinks singular values for each.
@ Therefore, it works well when M has low rank.
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Remark: SURE for matrix mean

@ orthogonally invariant estimator

X=UzV", M=UX(I,-OE)V"

@ Stein (1974) derived an unbiased estimate of risk (SURE):

¢, ol — 0,
pq+Z{0¢ ~2Ap-gq+ Déi - 20— } 4Z—J

0' - O'J
» regularity conditions — M. and Strawderman (2018)

@ SURE is also improved by singular value shrinkage (M. and
Strawderman, 2018)

» extension of Johnstone (1988)
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Singular value shrinkage prior
(Matsuda and Komaki, 2015)

June 19, 2019 Symposium in memory of Charles Stein 11/37



Superharmonic prior for estimation

X~ Ny, 1,)

@ estimate u based on X under the quadratic loss
@ superharmonic prior

14 2

An(u) = Z zn(ﬂ) <0

i=1 l

@ the Stein prior (p > 3) is superharmonic:

() = N>~

@ Bayes estimator with the Stein prior shrinks to the origin.

Theorem (Stein, 1974)
Bayes estimators with superharmonic priors dominate MLE.
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Superharmonic prior for prediction
X ~ NP(M? E)a Y ~ Np(/“t,E)

@ We predict Y from the observation X (Z, ok known)
@ Bayesian predictive density with prior m(u)

Ba(y | ) = f PO | o | Hdu

@ Kullback-Leibler loss

POy | ,U)d

Dy | ), POy | ) = f P ) log
Py | x)

@ Bayesian predictive density with the uniform prior is minimax
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Superharmonic prior for prediction

X ~N,(2), Y ~N,(uX)

Theorem (Komaki, 2001)

When T « I, the Stein prior dominates the uniform prior.

Theorem (George, Liang and Xu, 2006)

When = « 3, superharmonic priors dominate the uniform prior.

Theorem (Kobayashi and Komaki, 2008; George and
Xu, 2008)

For general £ and s, superharmonic priors dominate the uniform
prior.
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Motivation

James—Stein estimator Stein’s prior
vector . J s
fus = (1-£=2)x () = |l 72
, Efron—Morris estimator
matrix R X ?
Mew = X (I, - (p— g - DXTX)™)

@ note: JS and EM are not generalized Bayes.
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Singular value shrinkage prior

q
nsys(M) = det(M™ M)~ P~47D/2 = 1—[ o (M)~ P4
i=1

@ We assume p > g + 2.

@ mgys puts more weight on matrices with smaller singular
values, so it shrinks singular values for each.

@ When g = 1, nrgys coincides with the Stein prior.

Theorem (M. and Komaki, 2015)

Tsys IS superharmonic: Angys < 0.

@ Therefore, the Bayes estimator and Bayesian predictive density
with respect to mgys are minimax.

June 19, 2019 Symposium in memory of Charles Stein 16 /37



Comparison to other superharmonic priors

@ Previously proposed superharmonic priors mainly shrink to
simple subsets (e.g. point, linear subspace).

@ In contrast, our priors shrink to the set of low rank matrices,
which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
Angys(M) = 0 if M has full rank. J

@ Therefore, superharmonicity of mgys is strongly concentrated in
the same way as the Laplacian of the Stein prior becomes a
Dirac delta function.
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An observation
@ James-Stein estimator
. p—2
i =(1-222)n
! (HW

@ Stein’s prior
s () = ||l ™~

@ Efron—Morris estimator

(5-‘_(1_]9_—6/_1)0.
[ 2 2 1

0;

@ Singular value shrinkage prior

q
msvs(M) = | | orany D

i=1
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Numerical results
@ Risk functions of Bayes estimators
> p= 5, q = 3
» dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior
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@ msys works well when o, is small, even if oy is large.
> Stein’s prior works well when [[M|7. = o] + 05 + o5 is small.
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Numerical results
@ Risk functions of Bayes estimators
»p=549=3
» dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior
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@ nsys has constant risk reduction as long as o, = 03 =0,
because it shrinks singular values for each.
@ Therefore, it works well when M has low rank.
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Remark: integral representation

@ When p > 24, an integral representation of rgys is obtained.

» dX : Lebesgue measure on the space of positive semidefinite
matrices

nsvs(M) o« pr’q(O, [p ® 2)dX

@ cf. Stein’s prior

ws(u) = Il oc f Np(0, 11,)dz
0
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Additional shrinkage

@ Efron and Morris (1976) proposed an estimator that further
dominates Mgy by additional shrinkage to the origin

q2+q—2
T v e

@ Motivated from this estimator, we propose another shrinkage
prior )
—(g°+q-2
nvsvs(M) = mgys(M)|[ M|+

Theorem (M. and Komaki, 2017)

The prior mysys asymptotically dominates ngys in both estimation
and prediction.
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Numerical results

@ p=10,g=3,0, =03 =0 (rank 1)
@ black: m, blue: ng, green: mgys, red: mvsvs
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@ Additional shrinkage improves risk when ||M||g is small.
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Admissibility results

Theorem (M. and Strawderman)

The Bayes estimator with respect to ngys is inadmissible.
The Bayes estimator with respect to mysys is admissible.

@ Proof: use Brown’s condition
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Addition of column-wise shrinkage

q
vsvs(M) = sys(M) 1—[ M.~
=1

@ M.;: j-th column vector of M

Theorem (M. and Komaki, 2017)

The prior mysys asymptotically dominates ngys in both estimation
and prediction.

@ This prior can be used for sparse reduced rank regression.

Y=XB+E, E~N,,/(01,®X)
- B=X"X)"'X"Y ~N,,(B,(X"X)"' ®%)
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Stein’s recommendation
@ Efron—Morris estimator

A_( p—q—l)
Gi=|1-———|0o;

0;

@ Singular value shrinkage prior

q
msvs(M) = | [ oy e

i=1

@ Stein (1974, Section 5) recommends stronger shrinkage

. ( p+q—2i—1)
Gi=|1-———|o;

o2

and says it dominates the Efron—Morris estimator.
@ Corresponding prior ?

q
x(M) = [ | ey e
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Empirical Bayes matrix completion
(Matsuda and Komaki, 2019)
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Empirical Bayes viewpoint

@ Efron—Morris estimator was derived as an empirical Bayes
estimator.

M~N,,0,1,0%) & M, ~Ny,0,%)
Y| M ~ Np,q(M,Ip(X)Iq) (=4 Yij NN(Ml‘j,l)
@ Bayes estimator (posterior mean)
M (Y) =Y (I, - (I, +2)™")
@ Since Y'Y ~ W (I, + Z, p) marginally,
Ty)-! 1 -1
E[(Y'Y) |=——U,+2)

p—q-1

— Replace (I, + )™ in M*(Y) by (p—q - D)(YTY)™!

— Efron—Morris estimator
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Matrix completion

@ Netflix problem
» matrix of movie ratings by users

movie 1 movie 2 movie 3 movie 4

user 1 4 7 ? 2
user 2 6 ? 3 8
user 3 ? 1 9 ?
user 4 4 5 ? 3

@ We want to estimate unobserved entries for recommendation.
— matrix completion

@ Many studies investigated its theory and algorithm.
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Matrix completion

@ Low-rankness of the underlying matrix is crucial in matrix
completion.
@ Existing algorithms employ low rank property.
» SVT, SOFT-IMPUTE, OPTSPACE, Manopt, ...

@ e.g. SVT algorithm
> ||All+: nuclear norm (sum of singular values)

minimize || M|,
M

subject to |Y;; — M,-jl <Ej @(,)eQ
— sparse singular values (low rank)
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EB algorithm

@ We develop an empirical Bayes (EB) algorithm for matrix
completion.
@ EB is based on the following hierarchical model
» Same with the derivation of the Efron—Morris estimator
» C: scalar or diagonal matrix (unknown)

M ~N,,0,I,8%)
Y|M~N,,(M,I,&C)

@ Goal: estimate M from observed entries of Y
» If Y is fully observed, it reduces to the previous problem.

— EM algorithm !!
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EB algorithm

EB algorithm

@ E step: estimate (%, C) from M and Y
@ M step: estimate M from Y and (2, €)
@ lterate until convergence

Both steps can be solved analytically.

» Sherman-Morrison-Woodbery formula
We obtain two algorithms corresponding to C is scalar or
diagonal.

EB does not require heuristic parameter tuning other than
tolerance.
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Numerical results

@ Results on simulated data

» 1000 rows, 100 columns, rank = 30, 50 % entries observed

» observation noise: homogeneous (R = 1)

error | time

EB (scalar) 0.26 | 4.33
EB (diagonal) | 0.26 | 4.26
SVT 0.48 | 1.44
SOFT-IMPUTE | 0.50 | 3.58
OPTSPACE | 0.89 | 67.74
Manopt 0.89 | 0.17

@ EB has the best accuracy.
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Numerical results: rank

@ Performance with respect to rank

» 1000 rows, 100 columns, 50 % entries observed
» observation noise: unit variance
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@ EB has the best accuracy when r > 20.

June 19, 2019 Symposium in memory of Charles Stein 34/37



Application to real data

@ Mice Protein Expression dataset

» expression levels of 77 proteins measured in the cerebral cortex

of 1080 mice

» from UCI Machine Learning Repository
error | time
EB (scalar) 0.12 | 2.90
EB (diagonal) | 0.11 | 3.35
SVT 0.84 | 0.17
SOFT-IMPUTE | 0.29 | 2.14
OPTSPACE | 0.33 | 12.39
Manopt 0.64 | 0.19

@ EB attains the best accuracy.
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Future work (tensor case)

@ How about tensors?

X = Xij)

@ For tensors, even the definition of rank or singular values is not
clear..

@ Hopefully, some empirical Bayes method provides a natural
shrinkage for tensors.
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Summary
Efron—Morris estimator (Efron and Morris, 1972)
Mem(X) = X (I, = (p— g - HXTX)™)

minimax estimator of a normal mean matrix
natural extension of the James—Stein estimator

3
Singular value shrinkage prior (M. and Komaki, Biometrika 2015)

nsys(M) = det(M™ M)~ (P-a=D/2

superharmonic (Arrgys < 0), natural generalization of the Stein prior
works well for low-rank matrices — reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)
estimate unobserved entries of a matrix by exploting low-rankness
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