Central moment inequalities using Stein's method

Nathan Ross (University of Melbourne)

Joint Work with: Andrew Barbour (Zürich) Yuting Wen Concentration inequalities bound the deviation of a variable from its mean:

$$\mathbb{P}(|W - \mathbb{E}W| \ge t) \le \cdots$$

Useful in many applications: statistics (p-values), theoretical computer science, discrete math, statistical physics,... (LLNs, union bounds)

Introduction

Cramér-Chernoff method: For $\theta > 0$,

$$\mathbb{P}(W - \mathbb{E}W \ge t) \le e^{-\theta t} \mathbb{E}e^{\theta(W - \mathbb{E}W)},$$

bound the mgf on the RHS and optimize over θ .

Main approach to bounding the mgf in applications is

- 1. Martingale difference (Hoeffding,...,McDiarmid,...)
 - Application: sums of independent random variables
- 2. Entropy method (...,Boucheron-Lugosi-Massart,...)
 - Application: "low influence" functions of independent rvs
- 3. Stein's method (Chatterjee, Goldstein,...)
 - Application: variables amenable to Stein's method couplings

Introduction

Stein's method approach to concentration relies on couplings:

- local dependence,
- exchangeable pairs,
- size biasing,
- other ad-hoc.

Requires extra assumptions, such as boundedness.

Introduction

Related approach, when mgf is unavailable: for any q > 0,

$$\mathbb{P}(|W - \mathbb{E}W| \ge t) \le t^{-q} \mathbb{E}[|W - \mathbb{E}W|^q],$$

and bound the central moment on the RHS.

Main approach to bounding the central moment in applications is

- 1. Martingale difference (Rosenthal,...)
- 2. Entropy method (...,Boucheron-Lugosi-Massart,...)
- 3. Exchangeable pairs (Chatterjee,...)

Note: Can still get exponential tail bounds if good central moment bounds for large q.

Use **Stein couplings** to bound the central moments.

Main strengths are

- weaker assumptions on the couplings than for bounding mgf,
- applications with dependence that aren't amenable to other approaches.

Outline of the talk:

- 1. Stein couplings,
- 2. General result,
- 3. Applications:
 - local statistics of sparse Erdős-Rényi graphs,
 - neighbourhood statistics of germ grain models.

Stein Couplings. Chen and Röllin (2010)

The ordered collection of random variables (W, W', G) with $\mathbb{E}W =: \mu$ are said to form a **Stein coupling** if

$$\mathbb{E}\big[G\big(f(W')-f(W)\big)\big]=\mathbb{E}\big[(W-\mu)f(W)\big],$$

for all functions f such that the expectations exist.

Examples

Stein Coupling:

$$\mathbb{E}\big[G\big(f(W')-f(W)\big)\big]=\mathbb{E}\big[(W-\mu)f(W)\big]$$

Exchangeable pairs:

(W, W') is exchangeable, and for some a > 0,

$$\mathbb{E}\big[(W'-W)|W\big] = -a(W-\mu).$$

Set G = (W' - W)/(2a).

Examples

Stein Coupling:

$$\mathbb{E} \left[G \left(f(W') - f(W) \right)
ight] = \mathbb{E} \left[(W - \mu) f(W)
ight]$$

Size biasing:

W' has the <u>size-bias</u> distribution of $W \ge 0$:

$$\mathbb{E}f(W') = \frac{\mathbb{E}[Wf(W)]}{\mu}.$$

Set $G = \mu$.

Examples

Stein Coupling:

$$\mathbb{E}\big[G\big(f(W')-f(W)\big)\big]=\mathbb{E}\big[(W-\mu)f(W)\big]$$

Local dependence:

•
$$W = \sum_{i=1}^{n} X_i$$
, with $\mathbb{E}X_i = 0$.

▶ For $1 \le i \le n$, there are $\mathcal{N}_i \subseteq \{1, ..., n\}$, such that X_i is <u>independent</u> of $W_i := W - \sum_{j \in \mathcal{N}_i} X_j$.

Set $W' := W_I$, where *I* is a uniform index from $\{1, ..., n\}$. Set $G = -nX_I$.

Stein Couplings

These **Stein couplings** are widely used for both distributional approximation and concentration inequalities.

It is known how to construct them for many applications.

There are other ad-hoc constructions in the literature.

General result

NOTATION:
$$||X||_q = (\mathbb{E}[X^q])^{1/q}$$

Theorem: Let (W, W', G) be a **Stein coupling** and suppose that

$$\|G\|_{2k} \leq A$$
, and $\|W' - W\|_{2k} \leq B$.

Then

$$\|W-\mu\|_{2k} \leq \sqrt{(2k-1)AB} \exp\left\{\sqrt{\frac{B(2k-1)}{A}}\right\}.$$

General Result

From previous slide:

$$\|W-\mu\|_{2k} \leq \sqrt{(2k-1)AB} \exp\left\{\sqrt{\frac{B(2k-1)}{A}}\right\}.$$

In many applications, $\sigma^2 := \operatorname{Var}(\mathcal{W}) o \infty$ and

- A is of order σ^2 ,
- B is of constant order.

Then if $k \ll \sigma^2$, we have

$$\|(W-\mu)/\sigma\|_{2k} \le c\sqrt{2k-1}.$$

Order in k is tight for sums of random variables, or the normal distribution.

Note: Need k of order $log(\sigma)$ for exponential tail bounds.

Example: Local Dependence

Local dependence:

- $W = \sum_{i=1}^{n} X_i$, with $\mathbb{E}X_i = 0$.
- For 1 ≤ i ≤ n, there are N_i ⊆ {1,..., n}, such that X_i is independent of W_i := W − ∑_{i∈N_i}X_j.

Set $W' := W_I$, where I is a uniform index from $\{1, \ldots, n\}$. Set $G = -nX_I$.

Example: Local Dependence

Here
$$W' - W = -\sum_{j \in \mathcal{N}_I} X_j$$
 and $G = -nX_I$.

Recall assumption from General Result:

$$\|G\|_{2k} \le A$$
, and $\|W' - W\|_{2k} \le B$.

Thus we can apply General Result with

$$A = n \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} |X_i|^{2k}\right)^{1/(2k)} B = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \Big| \sum_{j \in \mathcal{N}_i} X_j \Big|^{2k}\right)^{1/(2k)}.$$

In given application may be able to compute directly.

Example: Local Dependence

In general, we can set

$$d := \max_{i} |\mathcal{N}_{i}|, \ m := \max_{i} ||X_{i}||_{2k},$$

and then take

$$A = nm, B = dm,$$

implying

$$\|W\|_{2k} \leq \sqrt{n}m\sqrt{d(2k-1)}\exp\left\{\sqrt{\frac{d(2k-1)}{n}}\right\}.$$

Independent case: d = 1 and for $k \ll n$, RHS is of order

$$\sqrt{n}m\sqrt{2k-1}.$$

Application: n-hood statistics of sparse Erdős-Rényi

Setup:

- G_n is an Erdős-Rényi random graph on <u>*n* vertices</u> with edge probability λ/n ,
- ▶ $N_r(i, G_n)$ is the *r*-neighborhood of vertex *i* in G_n ,
- ► *U* is a function on vertex-labeled graphs of at most *n* vertices.

We look at

$$W:=\sum_{i=1}^n U(N_r(i,\mathcal{G}_n)).$$

Examples of U:

- an <u>indicator</u> in terms of the degree of vertex i (r = 1),
- the number of triangles containing vertex i (r = 2).

Result

Recall

$$W:=\sum_{i=1}^n U(N_r(i,\mathcal{G}_n)).$$

<u>Assume</u> U satisfies for some $c, \beta \ge 0$:

$$|U(G)| \leq c \, (ext{number of vertices of } G)^eta.$$

Examples of *U*:

- ▶ an <u>indicator</u> in terms of the degree of vertex *i*: $c = 1, \beta = 0$,
- the number of triangles containing vertex *i*: $c = 1/2, \beta = 2$.

Then there is an explicit constant $C(\beta, r)$ such that

$$\left. n^{-1/2} \left| \left| W - \mathbb{E} W
ight|
ight|_{q} \leq c \ \mathcal{C}(eta,r) \ \max\{\lambda,q(1+eta)\}^{(1+2eta)r+1/2}
ight\}$$

Application: n-hood statistics of germ grain models Joint work with Peter Braunsteins (U Melb)

Setup:

- \mathcal{V}_n is collection of *n* points uniformly distributed on $[0, n^{1/2})^2$,
- ▶ $B_r(i, V_n)$ is the radius-*r* n-hood around point *i* in V_n ,
- ► *U* is a function on point-labeled configurations.

We look at

$$W:=\sum_{i=1}^n U\big(B_r(i,\mathcal{V}_n)\big).$$

Example of *U*:

▶ an <u>indicator</u> in terms of the number of points of $B_r(i, \mathcal{V}_n)$.

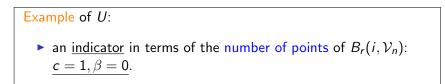
Result

Recall

$$W:=\sum_{i=1}^n U\big(B_r(i,\mathcal{V}_n)\big).$$

<u>Assume</u> U satisfies for some $c, \beta \ge 0$:

$$|U(V)| \leq c ($$
number of points in $V)^{eta}$.



Then there is an explicit constant $C(\beta)$ such that

$$n^{-1/2} \left| |W - \mathbb{E}W|
ight|_q \leq c \ \mathcal{C}(eta) [\max\{9\pi r^2, q(1+eta)\} + 1]^{eta+3/2}.$$

Proof ideas

General Result: If $f(w) = (w - \mu)^{2k-1}$, then

$$\mathbb{E}[(W-\mu)^{2k}] = \mathbb{E}[(W-\mu)f(W)] = \mathbb{E}[G(f(W')-f(W))].$$

Now use Binomial Theorem and manipulate...

Application: Use General Result.

- Stein couplings are similar to that for local dependence, but
- "dependency neighborhoods" are of random size, depending on the n-hoods of a randomly chosen vertex.

Extensions in the paper:

- allow for approximate Stein coupling (remainder term),
- sharper results assuming more about the couplings,
- detailed discussion using moment bounds for concentration.

Reference:

Central moment inequalities using Stein's method. A.D. Barbour, N. Ross, Y. Wen https://arxiv.org/abs/1802.10225

Thank You!