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INTRODUCTION

• We identify the Reverse Stein Effect.

• A statistician who shrinks his/her data toward a point chosen without
reliable knowledge about the underlying value of the parameter to be
estimated but based instead upon the observed data will not be protected
by the minimax property of shrinkage estimators such as that of James
and Stein.

• But instead, he/she will likely incur a greater error than if shrinkage were
not used.
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THE CASE FOR SHRINKAGE: THE STEIN EFFECT

• Suppose, X = Y + δ ∈ R
p is an observed random vector.

• δ is an unknown location parameter,

• The unobserved random vector Y is absolutely continuous.

• We further assume that, Y ≡ X − δ is directionally symmetric, that is,

~Y
d
= −~Y , where ~Y := Y/‖Y ‖ is the unit vector in the direction of Y .

• We consider the “shrinkage” estimators for δ of the form:

δ̂γ ≡ δ̂γ(X; δ0) = γ(X − δ0) · (X − δ0) + δ0, (1)

where γ ≡ γ(X − δ0) ∈ [0,1) and δ0 is any fixed shrinkage target point in
R
p.

• The improvement offered by such shrinkage estimators is often referred
to as the Stein Effect.
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THE STEIN EFFECT (CONTD.)
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• For fixed δ and δ0, let B1 ≡
B1(‖δ−δ0‖; δ0) ⊂ R

p denote the
ball of radius ‖δ − δ0‖ centred
at δ0.

• Let H be the halfspace
bounded by a hyperplane ∂H
tangent to B1 at δ.

•
Prδ

[

‖X − δ0‖ > ‖δ − δ0‖
∣

∣ δ0
]

=Prδ
[

X ∈ Bc
1

∣

∣ δ0
]

>Prδ[X ∈ H | δ0] =
1

2
, (2)

• The inequality in (2) follows
from directional symmetry.

• Furthermore, under somewhat stronger but still general assumptions,

lim
p→∞

Prδ [ ‖X − δ0‖ > ‖δ − δ0‖ ] ≡ lim
p→∞

Prδ [X ∈ Bc
1] = 1. (3)
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THE STEIN EFFECT (CONTD.)
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• Thus ‖X − δ0‖ is usually an overestimate of
‖δ − δ0‖, so an estimator of the form γ(X −
δ0) · (X − δ0) for δ− δ0 should be preferable to
X − δ0 itself.

• Writing δ as (δ− δ0)+ δ0 immediately leads to
estimators for δ of the form (1).

• Now, suppose, γ̃ ≡ γ̃(X − δ0, δ − δ0) is allowed
to depend on δ and B2 ≡ B2(‖δ− δ0‖; δ̄) is the
ball of radius 1

2
‖δ−δ0‖ centred at 1

2
(δ0+δ) ≡ δ̄.

• Then {X | ∃ γ̃ ∈ [0,1) ∋ ‖δ̂γ̃ − δ‖ < ‖X − δ‖} =
Bc

2.

• Since Bc
2 ⊃ Bc

1, Prδ[X ∈ Bc
2 | δ0] > 1

2
.

• Furthermore, under the assumptions,

lim
p→∞

Prδ[X ∈ Bc
2] = 1. (4)

• This shows that if δ were known then usually some shrinkage factor γ̃
applied to X − δ0 will move X closer to δ, again suggesting a search for
estimators of the form (1).
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THE STEIN PARADOX

• Assume now that Y ∼ Np(0, σ2Ip), the multivariate normal distribution
with mean 0 and covariance matrix σ2Ip, where σ2 > 0 is known, so
X ∼ Np(δ, σ2Ip).

• In this simple case, the James-Stein (JS) estimator for δ is given by

δ̂JS ≡ δ̂JS(X; δ0) =

(

1− σ2(p− 2)

‖X − δ0‖2

)

(X − δ0) + δ0, (5)

where δ0 is a fixed but arbitrary point in R
p.

• The truncated ≡ “plus-rule" JS estimator

δ̂+JS ≡ δ̂+JS(X; δ0) =

(

1− σ2(p− 2)

‖X − δ0‖2

)+

(X − δ0) + δ0 (6)

is a shrinkage estimator of the form (1).

• These renowned estimators have the property that when p ≥ 3, they dom-
inate X under both the mean square error (MSE) and Pitman closeness
(PC) criteria.
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THE STEIN PARADOX (CONTD.)

• For every fixed δ, δ0 ∈ R
p,

Eδ[‖δ̂+JS(X; δ0)− δ‖2
∣

∣ δ0] < Eδ[‖δ̂JS(X; δ0)− δ‖2
∣

∣ δ0] < Eδ[‖X − δ‖2] ≡ pσ2,
(7)

• We can also show:

Prδ[ ‖δ̂+JS(X; δ0)− δ‖ < ‖X − δ‖
∣

∣ δ0] > Prδ[ ‖δ̂JS(X; δ0)− δ‖ < ‖X − δ‖
∣

∣ δ0]

= Pr

[

χ2
p

(

‖δ − δ0‖2
4σ2

)

≥ ‖δ − δ0‖2
4σ2

+
p− 2

2

]

>
1

2
(8)

and approaches 1 as p → ∞ if
‖δ−δ0‖

σ
= o(p).

• Note especially that:

(A) the improvements offered by the JS estimators can be great, espe-

cially when p is large: if δ = δ0 then MSE(δ̂+JS) <MSE(δ̂JS) = 2σ2 ≪
pσ2, and if ‖δ−δ0‖ = o(p) with σ2 fixed then Prδ[ ‖δ̂−δ‖ < ‖X−δ‖] → 1

as p → ∞ for both δ̂ = δ̂JS and δ̂+JS;

(B) the MSE and PC dominances of X by δ̂JS and δ̂+JS hold even if the
true mean δ is arbitrarily far from the shrinkage target δ0.
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THE STEIN PARADOX (CONTD.)

• Of the two properties (A) and (B), it is (B) that is most surprising.

• It is not difficult to construct estimators that satisfy (A).

• For example a Bayes estimator w.r. to a normal prior centred at δ0.

• However, such a Bayes estimator will not satisfy (B), the difference stem-
ming from the fact that the Bayes estimator will have a constant shrink-
age factor while the shrinkage factors in (5) and (6) are adaptive.

• When first discovered, the domination of X by the JS estimators was
highly surprising, because the estimator X itself is:

(a) the best unbiased estimator of δ,

(b) the best translation-invariant estimator of δ,

(c) the maximum likelihood estimator (MLE) of δ,

(d) a minimax estimator of δ, and

(e) an admissible estimator of δ when p = 1 or 2.

So compelling were these properties of X that its domination by the JS
estimators came to be known as the Stein Paradox.
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THE REVERSE STEIN EFFECT
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• Suppose that the position X ∼ Np(δ, σ2Ip)
is known and suppose p ≥ 3.

• If we use the truncated James-Stein esti-
mator δ̂+JS(X; δ0) to estimate δ by shrinking
X toward a fixed point δ0, then by (7) and
(8), δ̂+JS(X; δ0) is more likely to be closer
to δ than our present location X is, no
matter where δ is! And what’s more, we
can shrink X toward any δ0 that we like!

• Consider the set,

{ δ0 | ∃γ̌ ∈ [0,1) ∋ ‖δ̂γ̌ − δ‖ < ‖X − δ‖}, (9)

where γ̌ ≡ γ̌(X− δ0, X− δ) may depend on
δ.

• This set is exactly Hc.

• Then, since Pr[ δ0 ∈ Hc|X ] = 1
2

by directional symmetry, this shows that
shrinkage toward a randomly chosen δ0 would have at most a 50-50
chance of moving X closer to δ even when the shrinkage factor is chosen
optimally for δ.
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THE REVERSE STEIN EFFECT: QUO VADIS

• For a representative values of δ, the set of all δ0 such that the James-
Stein shrinkage estimator δ̂+JS(X; δ0) lies closer to δ than the observation
X.

σ
√
p− 2s

δ
s

X

Pr[δ0 ∈ H | X] = 1
2

σ2(p−2)
2‖X−δ‖K H

B

(a) ‖X − δ‖ < σ
2

√
p− 2

σ
√
p− 2s

δ
s

X

Pr[δ0 ∈ H | X] = 1
2K H

B

σ2(p−2)
2‖X−δ‖

(b) ‖X − δ‖ > σ
2

√
p− 2

• We consider the set which is complement to the cross-hatched region in
the above Figure.
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THE REVERSE STEIN EFFECT (CONTD.)

• By the directional symmetry of δ0 about X, it follows from the Figure
that

Pr[ ‖δ̂+JS(X; δ0)− δ‖ > ‖X − δ‖
∣

∣ X ] > Pr[ δ0 ∈ H | X ] =
1

2
. (10)

• If δ0 is actually symmetrically distributed about X then it is easy to see
that

E[ δ̂+JS(X; δ0) | X] = X, (11)

so by Jensen’s inequality,

E[ ‖δ̂+JS(X; δ0)− δ‖2
∣

∣ X] > E[ ‖X − δ‖2
∣

∣ X] ≡ pσ2 ∀δ ∈ R
p. (12)

• Furthermore, under additional but still general assumptions,

lim
p→∞

Prδ[ ‖δ̂+JS(X; δ0)− δ‖ > ‖X − δ‖ ] = 1. (13)
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THE REVERSE STEIN EFFECT (CONTD.)

• Don’t (10) and (12) contradict (8) and (7)? For example, under any

probability distribution for δ0, (7) yields

Eδ[ ‖δ̂+JS(X; δ0)− δ‖2] < Eδ[ ‖X − δ‖2] ≡ pσ2 ∀δ ∈ R
p, (14)

while (12) yields

Eδ[ ‖δ̂+JS(X; δ0)− δ‖2] > Eδ[ ‖X − δ‖2] ≡ pσ2 ∀δ ∈ R
p. (15)

• So do we shrink or not?
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TO SHRINK OR NOT TO SHRINK – THAT IS THE QUESTION

• Actually, no formal contradiction has occurred.

• The probabilities and expectations appearing in (7), (8), (10), and (12)
are conditional probabilities and conditional expectations with different
conditioning variables.

• Furthermore, the joint distributions of (X, δ0) in (14) and (15) are dif-
ferent, having joint pdfs of the forms fδ(X)f(δ0) and fδ(X)f(δ0|X), re-
spectively.

• In the former, X and δ0 are independent whereas in the latter, δ0 is
dependent.
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THE REVERSE STEIN EFFECT IS REAL

• The Reverse Stein Effect is just as real as the original Stein Effect itself
– both are simply manifestations of the strong curvature of spheres in
multi-dimensional Euclidean space.

• The figures and the results (10), (12), and (13) show that without some
prior knowledge of the location δ, one should not shrink X.

• If the shrinkage target δ0 is chosen without reliable prior information
but instead is based upon the data X, the minimax/Bayesian robustness
property (B) of the JS estimator is lost and no longer guarantees that
shrinking is not harmful on average.

• A shrinkage estimator is only as good as, but no better than, the prior
information upon which it is based. Without reliable prior, as opposed
to posterior (as represented, for example, by “data-dependent” priors),
information, shrinkage is likely to decrease the accuracy of estimation.

• if the statistical estimation problem is truly invariant under translation
then the best invariant estimator should be used, namely X itself.
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